# ACADEMIC REGULATIONS (NR-23) COURSE STRUCTURE AND

## DETAILED SYLLABI

#### **FOR**

#### **B.Tech Regular Four Year Degree Courses**

(For the Batches Admitted From 2023-2024)

8

### B. Tech (Lateral Entry Scheme)

(For the Batches Admitted From 2024-2025)

#### MECHANICAL ENGINEERING





## NARSIMHAREDDY ENGINEERING COLLEGE UGC AUTONOMOUS INSTITUTION

Maisammaguda (V), Kompally - 500100, Secunderabad, Telangana state, India

## ACADEMIC REGULATIONS (NR23) FOR B.TECH REGULAR STUDENTS WITH EFFECT FROM THE ACADEMIC YEAR 2023-24

#### 1.0 <u>Under-Graduate Degree Programme in Engineering & Technology (UGP inE&T)</u>

NarsimhaReddy Engineering College (NRCM) offers a 4-year (8 semesters) **Bachelor of Technology** (B.Tech.) degree programme, under Choice Based Credit System (CBCS) with effect from the academic year **2023-24**.

#### 2.0 Eligibility for Admission

- 2.1 Admission to the undergraduate(UG) programme shall be made on the basis of the merit rank obtained by the qualified student in entrance test conducted by the Telangana State Government (EAMCET), subject to reservations as prescribedby the government from time to time.
- 2.2 The medium of instructions for the entire undergraduate programme in Engineering & Technology will be **English** only.

#### 3.0 B.Tech. Programme Structure

- 3.1 A student after securing admission shall complete the B.Tech. programme in a minimum period of **four** academic years (8 semesters), and a maximum period of **eight** academic years (16 semesters) starting from the date of commencement of first year first semester, failing which student shall forfeit seat in B.Tech course. Each student shall secure 160 credits (with CGPA ≥ 5) required for the completion of the undergraduate programme and award of the B.Tech. degree.
- 3.2 UGC/ AICTE specified definitions/ descriptions are adopted appropriately for various terms and abbreviations used in these academic regulations/ norms, which are listed below.

#### 3.2.1 Semester Scheme

Each undergraduate programme is of 4 academic years (8 semesters) with the academic year divided into two semesters of 22 weeks (≥ 90 instructional days) each and in each semester - 'Continuous Internal Evaluation (CIE)' and 'Semester End Examination (SEE)' under Choice Based Credit System (CBCS) and Credit Based Semester System (CBSS) indicated by UGC, and curriculum/course structure suggested by AICTE are followed.



#### 3.2.2 Credit Courses

All subjects/ courses are to be registered by the student in a semester to earn credits which shall be assigned to each subject/ course in an L: T: P: C (lecture periods: tutorial periods: practical periods: credits) structure based on the following general pattern.

- One credit for one hour/ week/ semester for Theory/ Lecture (L) courses or Tutorials.
- One credit for two hours/ week/ semester for Laboratory/ Practical (P) courses.

Courses like Environmental Science, Constitution of India, Intellectual Property Rights, and Gender Sensitization Lab are mandatory courses. These courses will not carry any credits.

#### 3.2.3 Subject Course Classification

All subjects/ courses offered for the undergraduate programme in E&T (B.Tech. degree programmes) are broadly classified as follows. The University has followed almost all the guidelines issued by AICTE/UGC.

| S. No. | Broad Course<br>Classification                                           | Course Group/<br>Category           | Course Description                                                                                                                                             |
|--------|--------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1      |                                                                          | BS – Basic Sciences                 | Includes Mathematics, Physics and Chemistry subjects                                                                                                           |
| 2      | Foundation<br>Courses                                                    | ES - Engineering<br>Sciences        | Includes Fundamental Engineering Subjects                                                                                                                      |
| 3      | (FnC)                                                                    | HS – Humanities and Social Sciences | Includes subjects related to Humanities, Social Sciences and Management                                                                                        |
| 4      | Core Courses<br>(CoC)                                                    | PC – Professional<br>Core           | Includes core subjects related to the parent discipline/ department/ branch of Engineering.                                                                    |
| 5      | Elective Courses (E&C)  PE – Professional Electives  OE – Open Electives |                                     | Includes elective subjects related to the parent discipline/ department/ branch of Engineering.                                                                |
| 6      |                                                                          | OE – Open Electives                 | Elective subjects which include inter-<br>disciplinary subjects or subjects in an area<br>outside the parent discipline/ department/ branch<br>of Engineering. |
| 7      | Core Courses                                                             | Project Work                        | B.Tech. Project or UG Project or UG Major<br>Project or Project Stage I & II                                                                                   |



| 8  |                           | Industry Training/<br>Internship/ Industry<br>Oriented Mini-<br>project/ Mini- Project/<br>Skill Development<br>Courses | Industry Training/ Internship/ Industry Oriented<br>Mini-Project/ Mini-Project/ Skill Development<br>Courses |
|----|---------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| 9  |                           | Seminar                                                                                                                 | Seminar/ Colloquium based on core contents related to parent discipline/ department/ branch of Engineering.  |
| 10 | Minor Courses             | -                                                                                                                       | 1 or 2 Credit Courses (subset of HS)                                                                         |
| 11 | Mandatory<br>Courses (MC) | -                                                                                                                       | Mandatory Courses (non-credit)                                                                               |

#### 4.0 Course Registration

- 4.1 A 'faculty advisor or counselor' shall be assigned to a group of 20 students, who will advise the students about the undergraduate programme, its course structure and curriculum, choice/option for subjects/ courses, based on their competence, progress, prerequisites and interest.
- 4.2 The academic section of the college invites 'registration forms' from students before the beginning of the semester through 'on-line registration', ensuring 'date and time stamping'. The online registration requests for any 'current semester' shall be completed before the commencement of SEEs (Semester End Examinations) of the 'preceding semester'.
- 4.3 A student can apply for **on-line** registration, **only after** obtaining the 'written approval' from faculty advisor/counselor, which should be submitted to the college academic section through the Head of the Department. A copy of it shall be retained with the Head of the Department, Faculty Advisor/ Counselor and the student.
- A student may be permitted to register for all the subjects/ courses in a semester as specified in the course structure with maximum additional subject(s)/course(s) limited to 6 Credits (any 2 elective subjects), based on **progress** and SGPA/ CGPA, and completion of the '**pre-requisites**' as indicated for various subjects/ courses, in the department course structure and syllabus contents.
- **4.5** Choice for 'additional subjects/courses', not more than any 2 elective subjects in any Semester, must be clearly indicated, which needs the specific approval and signature of the Faculty Advisor/Mentor/HOD.
- **4.6** If the student submits ambiguous choices or multiple options or erroneous entriesduring **online** registration for the subject(s) / course(s) under a given/ specified course group/ category as listed in the course structure, only the first mentioned subject/ course in that category will be taken into consideration.
- **4.7** Subject/ course options exercised through **on-line** registration are final and **cannot** be changed or inter-changed; further, alternate choices also will not be considered.



However, if the subject/ course that has already been listed for registration by the Head of the Department in a semester could not be offered due to any inevitable or unexpected reasons, then the student shall be allowed to have alternate choice either for a new subject (subject to offering of such a subject), or for another existing subject (subject to availability of seats). Such alternate arrangements will be made by the Head of the Department, with due notification and time-framed schedule, within **a week** after the commencement of class-work for that semester.

- 4.8 Dropping of subjects/ courses may be permitted, only after obtaining prior approval from the faculty advisor/ counselor 'within a period of 15 days' from the beginning of the current semester.
- 4.9 Open Electives: The students have to choose three Open Electives (OE-I, II & III) from the list of Open Electives given by other departments. However, the student can opt for an Open Elective subject offered by his own (parent) department, if the student has not registered and not studied that subject under any category (Professional Core, Professional Electives, Mandatory Courses etc.) offered by parent department in any semester. Open Elective subjects already studied should not repeat/should not match with any category (Professional Core, Professional Electives, Mandatory Courses etc.) of subjects even in the forthcoming semesters.
- **4.10 Professional Electives**: The students have to choose six Professional Electives (PE-I to VI) from the list of professional electives given.

#### 5.0 Subjects/ courses to be offered

- **5.1** A subject/ course may be offered to the students, **only if** a minimum of 15 students opt for it.
- 5.2 More than **one faculty member** may offer the **same subject** (lab/ practical may be included with the corresponding theory subject in the same semester) in any semester. However, selection of choice for students will be based on 'first come first serve basis and CGPA criterion' (i.e. the first focus shall be on early **on-line entry** from the student for registration in that semester, and the second focus, if needed, will be on CGPA of the student).
- 5.3 If more entries for registration of a subject come into picture, then the Head of the Department concerned shall decide, whether or not to offer such a subject/ course for **two** (or multiple) sections.
- 5.4 In case of options coming from students of other departments/ branches/ disciplines (not considering **open electives**), first **priority** shall be given to the student of the '**parent department**'.

#### 6.0 Attendance requirements:

A student shall be eligible to appear for the semester end examinations, if the student acquires a minimum of 75% of attendance in aggregate of all the subjects/ courses



- (including attendance in mandatory courses like Environmental Science, Constitutionof India, Intellectual Property Rights, and Gender Sensitization Lab) for that semester. **Two periods** of attendance for each theory subject shall be considered, if the student appears for the mid-term examination of that subject.
- 6.2 Shortage of attendance in aggregate upto 10% (65% and above, and below 75%) in each semester may be condoned by the college academic committee on genuine and valid grounds, based on the student's representation with supporting evidence.
- **6.3** A stipulated fee shall be payable for condoning of shortage of attendance.
- **6.4** Shortage of attendance below 65% in aggregate shall in **NO** case be condoned.
- 6.5 Students whose shortage of attendance is not condoned in any semester are not eligible to take their end examinations of that semester. They get detained and their registration for that semester shall stand cancelled, including all academic credentials (internal marks etc.) of that semester. They will not be promoted to the next semester. They may seek re-registration for all those subjects registered in that semester in which the student is detained, by seeking re-admission into that semesteras and when offered; if there are any professional electives and/ or open electives, the same may also be re-registered if offered. However, if those electives are not offeredin later semesters, then alternate electives may be chosen from the same set of elective subjects offered under that category.
- 6.6 A student fulfilling the attendance requirement in the present semester shall not be eligible for readmission into the same class.

#### 7.0 Academic Requirements

The following academic requirements have to be satisfied, in addition to the attendance requirements mentioned in Item No. 6.

- 7.1 A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course, if student secures not less than 35% (14 marks out of 40 marks) in the Continuous Internal Evaluation (CIE), not less than 35% (21 marks out of 60 marks) in the semester end examinations (SEE), and a minimum of 40% (40 marks out of 100 marks) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together; in terms of letter grades, this implies securing 'C' grade or above in that subject/ course.
- 7.2 A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to Real-time Research Project (or) Field Based Research Project (or) Industry Oriented Mini Project (or) Internship (or) Seminar, if the student secures not less than 40% marks (i.e. 40 out of 100 allotted marks) in each of them. The student is deemed to have failed, if he (i) does not submit a report on Industry Oriented Mini Project/Internship, or (ii) not make a presentation of the same before the evaluation committee as per schedule, or (iii) secures less than 40% marks in Real-time Research



Project (or) Field Based Research Project (or) Industry Oriented Mini Project (or) Internship evaluations.

A student may reappear once for each of the above evaluations, when they are scheduled again; if the student fails in such 'one reappearance' evaluation also, the student has to reappear for the same in the next subsequent semester, as and when it is scheduled.

#### 7.3 Promotion Rules

| S. No. | Promotion                                                    | Conditions to be fulfilled                                                                                                                                                                                                                                                                                                  |
|--------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1      | First year first semester to first year second semester      | Regular course of study of first year first semester.                                                                                                                                                                                                                                                                       |
| 2      | First year second semester to Second year first semester     | <ul> <li>(i) Regular course of study of first year second semester.</li> <li>(ii) Must have secured at least 20 creditsout of 40 credits i.e., 50% credits up to first year second semester from all the relevant regular and supplementary examinations, whether the student takes those examinations or not.</li> </ul>   |
| 3.     | Second year first semester to<br>Second year second semester | Regular course of study of second year first semester.                                                                                                                                                                                                                                                                      |
| 4      | Second year second semester to Third year first semester     | <ul> <li>(i) Regular course of study of second year second semester.</li> <li>(ii) Must have secured at least 48 creditsout of 80 credits i.e., 60% credits up to second year second semester from all the relevant regular and supplementary examinations, whether the student takes those examinations or not.</li> </ul> |
| 5      | Third year first semester to<br>Third year second semester   | Regular course of study of third year first semester.                                                                                                                                                                                                                                                                       |
| 6      | Third year second semester to Fourth year first semester     | <ul> <li>(i) Regular course of study of third yearsecond semester.</li> <li>(ii) Must have secured at least 72 creditsout of 120 credits i.e., 60% credits up tothird year second semester from all the relevant regular and supplementary examinations, whether the student takes those examinations or not.</li> </ul>    |
| 7      | Fourth year first semester to<br>Fourth year second semester | Regular course of study of fourth year first semester.                                                                                                                                                                                                                                                                      |



- 7.4 A student (i) shall register for all courses/subjects covering 160 credits as specified and listed in the course structure, (ii) fulfills all the attendance and academic requirements for 160 credits, (iii) earn all 160 credits by securing SGPA ≥ 5.0 (in each semester), and CGPA ≥ 5 (at the end of 8 semesters), (iv) passes all the mandatory courses, to successfully complete the undergraduate programme. The performance of the student in these 160 credits shall be considered for the calculation of the final CGPA (at the end of undergraduate programme), and shall be indicated in the grade card / marks memo of IV-year II semester.
- 7.5 If a student registers for 'extra subjects' (in the parent department or other departments/branches of Engg.) other than those listed subjects totaling to 160 credits as specified in the course structure of his department, the performances in those 'extra subjects' (although evaluated and graded using the same procedure as that ofthe required 160 credits) will not be considered while calculating the SGPA and CGPA. For such 'extra subjects' registered, percentage of marks and letter grade alone will be indicated in the grade card / marks memo as a performance measure, subject to completion of the attendance and academic requirements as stated in regulations Items 6 and 7.1 7.4 above.
- A student eligible to appear in the semester end examination for any subject/ course, but absent from it or failed (thereby failing to secure 'C' grade or above) may reappear for that subject/ course in the supplementary examination as and when conducted. In such cases, internal marks (CIE) assessed earlier for that subject/ course will be carried over, and added to the marks to be obtained in the SEE supplementary examination for evaluating performance in that subject.
- 7.7 A student detained in a semester due to shortage of attendance may be re-admitted in the same semester in the next academic year for fulfillment of academic requirements. The academic regulations under which a student has been re-admitted shall be applicable. Further, no grade allotments or SGPA/ CGPA calculations will be done for the entire semester in which the student has been detained.
- 7.8 A student detained due to lack of credits, shall be promoted to the next academic year only after acquiring the required number of academic credits. The academic regulations under which the student has been readmitted shall be applicable to him.

#### 8.0 Evaluation - Distribution and Weightage of Marks

8.1 The performance of a student in every subject/course (including practicals and Project Stage – I & II) will be evaluated for 100 marks each, with 40 marks allotted for CIE (Continuous Internal Evaluation) and 60 marks for SEE (Semester End-Examination).



- 8.2 In CIE, for theory subjects, during a semester, there shall be two mid-term examinations. Each Mid-Term examination consists of two parts i) **Part A** for 10 marks, ii) **Part B** for 20 marks with a total duration of 2 hours as follows:
  - 1. Mid Term Examination for 30 marks:
    - a. Part A: Objective/quiz paper for 10 marks.
    - b. Part B: Descriptive paper for 20 marks.

The objective/quiz paper is set with multiple choice and fill-in the blanks type of questions for a total of 10 marks. The descriptive paper shall contain 6 full questions out of which, the student has to answer one question from each unit with either or choice with a weightage of 8M from Unit-1, 8M from Unit-2, 4M from Unit-3 for Mid-1 Examination and 4M from Unit-3, 8M from Unit-4, 8M from Unit-5 for Mid-2 Examination. The **average of the two Mid Term Examinations** shall be taken as the final marks for Mid Term Examination (for 30 marks).

The remaining 10 marks of Continuous Internal Evaluation are distributed as:

- 2. Assignment for 5 marks. (Average of 2 Assignments each for 5 marks)
- 3. Subject Viva-Voce/PPT/Poster Presentation/Case Study/Tech-Talk on a topic in the concerned subject for 5 marks.

While the first mid-term examination shall be conducted on 50% of the syllabus, the second mid-term examination shall be conducted on the remaining 50% of the syllabus.

Five (5) marks are allocated for assignments (as specified by the subject teacher concerned). The first assignment should be submitted before the conduct of the first midterm examination, and the second assignment should be submitted before the conduct of the second mid-term examination. The average of the two assignments shall be taken as the final marks for assignment (for 5 marks).

Subject Viva-Voce/PPT/Poster Presentation/ Case Study on a topic in the subject concerned for 5 marks before II Mid-Term Examination.

• The Student, in each subject, shall have to earn 35% of marks (i.e. 14 marks out of 40 marks) in CIE, 35% of marks (i.e. 21 marks out of 60) in SEE and Over all 40% of marks (i.e. 40 marks out of 100 marks) both CIE and SEE marks put together.

The student is eligible to write Semester End Examination of the concerned subject, if the student scores  $\geq 35\%$  (14 marks) of 40 Continuous Internal Examination (CIE) marks.

In case, the student appears for Semester End Examination (SEE) of the concerned subject but not scored minimum 35% of CIE marks (14 marks out of 40 internal marks), his performance in that subject in SEE shall stand cancelled inspite of appearing the SEE.

There is NO Computer Based Test (CBT) for NR23 regulations.

The details of the end semester question paper pattern are as follows:



- **8.2.1** The semester end examinations (SEE), for theory subjects, will be conducted for 60 marks consisting of two parts viz. i) **Part-A** for 10 marks, ii) **Part-B** for 50 marks.
  - Part-A is a compulsory question which consists of ten sub-questions from allunits carrying equal marks.
  - Part-B consists of five questions (numbered from 2 to 6) carrying 10 marks each. Each of these questions is from each unit and may contain sub-questions. For each question there will be an "either" "or" choice, which means that there willbe two questions from each unit and the student should answer either of the two questions.
  - The duration of Semester End Examination is 3 hours.
- **8.2.2** For the subject, **Computer Aided Engineering Graphics**, the Continuous Internal Evaluation (CIE) and Semester End Examinations (SEE) evaluation pattern is same as for other theory subjects.
- **8.3** For practical subjects there shall be a Continuous Internal Evaluation (CIE) during the semester for 40 marks and 60 marks for semester end examination. Out of the 40 marks for internal evaluation:
  - 1. A write-up on day-to-day experiment in the laboratory (in terms of aim, components/procedure, expected outcome) which shall be evaluated for 10 marks
  - 2. **10 marks for viva-voce** (or) tutorial (or) case study (or) application (or) poster presentation of the course concerned.
  - 3. Internal practical examination conducted by the laboratory teacher concerned shall be evaluated for 10 marks.
  - 4. The remaining 10 marks are for Laboratory Report/Project and Presentation, which consists of the Design (or) Software / Hardware Model Presentation (or) App Development (or) Prototype Presentation submission which shall be evaluated after completion of laboratory course and before semester end practical examination.

The Semester End Examination shall be conducted with an external examiner and the laboratory teacher. The external examiner shall be appointed from the other colleges which will be decided by the Principal of the College.

In the Semester End Examination held for 3 hours, total 60 marks are divided and allocated as shown below:

- 1. 10 marks for write-up
- 2. 15 for experiment/program
- 3. 15 for evaluation of results
- 4. 10 marks for presentation on another experiment/program in the same laboratory course and
- 5. 10 marks for viva-voce on concerned laboratory course.
- The Student, in each subject, shall have to earn 35% of marks (i.e. 14 marks out of 40 marks) in CIE, 35% of marks (i.e. 21 marks out of 60) in SEE and Over all



40% of marks (i.e. 40 marks out of 100 marks) both CIE and SEE marks put together.

The student is eligible to write Semester End Examination of the concerned subject, if the student scores  $\geq 35\%$  (14 marks) of 40 Continuous Internal Examination (CIE) marks.

In case, the student appears for Semester End Examination (SEE) of the concerned subject but not scored minimum 35% of CIE marks (14 marks out of 40 internal marks), his performance in that subject in SEE shall stand cancelled inspite of appearing the SEE.

- **8.4** The evaluation of courses having ONLY internal marks in I Year I Semester and IIYear II Semester is as follows:
  - 1. I Year I Semester course (*ex.*, *Elements of CE/ME/EEE/ECE/CSE etc*): The internal evaluation is for 100 marks and it shall take place during I Mid-Term examination and II Mid-Term examination. The sum of the two Mid-Term examinations is the final for 100 marks. Student shall have to earn 40%, i.e 40 marks out of 100 marks. There shall be NO external evaluation. The student is deemed to have failed, if he (i) is absent as per schedule, or (ii) secures less than 40% marks in this course.

**For CSE/IT and allied branches and Mining Engineering**, the Continuous Internal Evaluation (CIE) will be for 100 marks (i.e., Each Mid-Term examination 50 marks). Each Mid-Term examination consists of two parts i) **Part–A** for 20 marks, ii) **Part–B** for 20 marks with a total duration of 2 hours.

**Part A:** Objective/quiz paper is set with multiple choice, fill-in the blanks and match the following type of questions for a total of 20 marks. **Part B:** Descriptive paper shall contain 6 full questions out of which, the student has to answer one question from each unit with either or choice with a weightage of 8M from Unit-1, 8M from Unit-2, 4M from Unit-3 for Mid-1 Examination and 4M from Unit-3, 8M from Unit-4, 8M from Unit-5 for Mid-2 Examination.

The remaining 10 marks of Continuous Internal Evaluation are for Assignment (5 marks) and Subject Viva-Voce/PPT/Poster Presentation/ Case Study (5 marks).

**For all other branches,** the Continuous Internal Evaluation (CIE) will be for 100 marks. Out of the 100 marks for internal evaluation:

- a) A write-up on day-to-day experiment in the laboratory (in terms of aim, components/procedure, expected outcome) which shall be evaluated for 20 marks
- b) **20 marks for viva-voce** (or) tutorial (or) case study (or) application (or) poster presentation of the course concerned.
- c) Internal practical examination conducted by the laboratory teacher concerned shall be evaluated for 30 marks.
- d) The remaining 30 marks are for Laboratory Report/Project and Presentation, which consists of the Design (or) Software / Hardware Model Presentation (or) App Development (or) Prototype Presentation submission which shall be



evaluated after completion of laboratory course and before semester end practical examination.

- 2. II Year II Semester *Real-Time (or) Field-based Research Project* course: The internal evaluation is for 100 marks and it shall take place during I Mid-Term examination and II Mid-Term examination. The sum of two Mid-Term examinations is the final for 100 marks. Student shall have to earn 40%, i.e 40 marks out of 100 marks from the sum of the two examinations. There shall be NO external evaluation. The student is deemed to have failed, if he (i) does not submit a report on the Project, or (ii) does not make a presentation of the same before the internal committee as per schedule, or (ii) secures less than 40% marks in this course.
- 8.5 There shall be an Industry training (or) Internship (or) Industry oriented Mini-project (or) Skill Development Courses (or) Paper presentation in reputed journal (or) Industry Oriented Mini Project in collaboration with an industry of their specialization. Students shall register for this immediately after II-Year II Semester Examinations and pursue it during summer vacation/semester break & during III Year without effecting regular course work. Internship at reputed organization (or) Skill development courses (or) Paper presentation in reputed journal (or) Industry Oriented Mini Project shall be submitted in a report form and presented before the committeein III-year II semester before end semester examination. It shall be evaluated for 100 external marks. The committee consists of an External Examiner, Head of the Department, Supervisor of the Industry Oriented Mini Project (or) Internship etc, Internal Supervisor and a Senior Faculty Member of the Department. There shall be NO internal marks for Industry Training (or) Internship (or) Mini-Project (or) Skill Development Courses (or) Paper Presentation in reputed journal (or) Industry Oriented Mini Project.
- 8.6 The UG project shall be initiated at the end of the IV Year I Semester and the duration of the project work is one semester. The student must present Project Stage I during IV Year I Semester before II Mid examinations, in consultation with his Supervisor, the title, objective and plan of action of his Project work to the departmental committee for approval before commencement of IV Year II Semester. Only after obtaining the approval of the departmental committee, the student can start his project work.
- 8.7 UG project work shall be carried out in two stages: Project Stage I for approval of project before Mid-II examinations in IV Year I Semester and Project Stage IIduring IV Year II Semester. Student has to submit project work report at the end of IV Year II Semester. The project shall be evaluated for 100 marks before commencement of SEE Theory examinations.
- 8.8 For Project Stage I, the departmental committee consisting of Head of the Department, project supervisor and a senior faculty member shall approve the project work to begin before II Mid-Term examination of IV Year I Semester. The student is deemed to be not eligible to register for the Project work, if he does not submit a report on Project Stage I or does not make a presentation of the same before the evaluation committee as per schedule.



A student who has failed may reappear once for the above evaluation, when it is scheduled again; if he fails in such 'one reappearance' evaluation also, he has toreappear for the same in the next subsequent semester, as and when it is scheduled.

8.9 For Project Stage – II, the external examiner shall evaluate the project work for 60 marks and the internal project committee shall evaluate it for 40 marks. Out of 40 internal marks, the departmental committee consisting of Head of the Department, Project Supervisor and a Senior Faculty Member shall evaluate the project work for 20 marks and Project Supervisor shall evaluate for 20 marks. The topics for Industry Oriented Mini Project/ Internship/SDC etc. and the main Project shall be different from the topic already taken. The student is deemed to have failed, if he (i) does not submit a report on the Project, or (ii) does not make a presentation of the same beforethe External Examiner as per schedule, or (iii) secures less than 40% marks in the sum total of the CIE and SEE taken together.

For conducting viva-voce of project, Principal selects an external examiner from the list of experts in the relevant branch submitted by the Head of the Department.

A student who has failed, may reappear once for the above evaluation, when it is scheduled again; if student fails in such 'one reappearance' evaluation also, he has to reappear for the same in the next subsequent semester, as and when it is scheduled.

- **8.10** A student can re-register for subjects in a semester:
  - If the internal marks secured by a student in the Continuous Internal Evaluation marks for 40 (Sum of average of two mid-term examinations consisting of Objective & descriptive parts, Average of two Assignments & Subject Viva- voce/PPT/ Poster presentation/ Case Study on a topic in the concerned subject) are less than 35% and failed in those subjects.

They may seek re-registration for all those subjects registered in that semester in which the student is failed. The student has to re-appear for CIE and SEE as and when offered.

A student must re-register for the failed subject(s) for 40 marks within four weeks of commencement of the classwork in next academic year. His Continuous Internal Evaluation marks for 40 obtained in the previous attempt stand cancelled. The student has to obtain fresh set of marks for 40 allotted for CIE (Sum of average of two midterm examinations consisting of Objective & descriptive parts, Average of two Assignments & Subject Viva-voce/PPT/ Poster presentation/ Case Study on a topic in the concerned subject). Head of the Dept. will take care of this.

**8.11** For mandatory courses of Environmental Science, Constitution of India, Intellectual Property Rights, and Gender Sensitization lab, a student has to secure 40 marks out of 100 marks (i.e. 40% of the 100 marks allotted) in the Continuous Internal Evaluation



- for passing the subject/course. These marks should also be uploaded along with the internal marks of other subjects.
- **8.12** No marks or letter grades shall be allotted for mandatory/non-credit courses. Only Pass/Fail shall be indicated in Grade Card.

#### 9.0 Grading Procedure

- 9.1 Grades will be awarded to indicate the performance of students in each Theory Subject, Laboratory/Practicals/ Industry-Oriented Mini Project/Internship/SDC and Project Stage. Based on the percentage of marks obtained (Continuous Internal Evaluation plus Semester End Examination, both taken together) as specified in item8 above, a corresponding letter grade shall be given.
- 9.2 As a measure of the performance of a student, a 10-point absolute grading system using the following letter grades (as per UGC/AICTE guidelines) and corresponding percentage of marks shall be followed:

| % of Marks Secured in a Subject/Course (Class Intervals) | Letter Grade<br>(UGC Guidelines) | Grade Points |
|----------------------------------------------------------|----------------------------------|--------------|
| Greater than or equal to 90%                             | O<br>(Outstanding)               | 10           |
| 80 and less than 90%                                     | A <sup>+</sup><br>(Excellent)    | 9            |
| 70 and less than 80%                                     | A<br>(Very Good)                 | 8            |
| 60 and less than 70%                                     | B <sup>+</sup><br>(Good)         | 7            |
| 50 and less than 60%                                     | B<br>(Average)                   | 6            |
| 40 and less than 50%                                     | C<br>(Pass)                      | 5            |
| Below 40%                                                | F<br>(FAIL)                      | 0            |
| Absent                                                   | Ab                               | 0            |

- **9.3** A student who has obtained an 'F' grade in any subject shall be deemed to have 'failed' and is required to reappear as a 'supplementary student' in the semester end examination, as and when offered. In such cases, internal marks in those subjects will remain the same as those obtained earlier.
- 9.4 To a student who has not appeared for an examination in any subject, 'Ab' grade will be allocated in that subject, and he is deemed to have 'Failed'. A student will be required to reappear as a 'supplementary student' in the semester end examination, as and when offered next. In this case also, the internal marks in those subjects willremain the same as those obtained earlier.



- **9.5** A letter grade does not indicate any specific percentage of marks secured by the student, but it indicates only the range of percentage of marks.
- **9.6** A student earns Grade Point (GP) in each subject/ course, on the basis of the letter grade secured in that subject/ course. The corresponding 'Credit Points' (CP) are computed by multiplying the grade point with credits for that particular subject/ course.

- 9.7 A student passes the subject/ course only when  $GP \ge 5$  ('C' grade or above)
- 9.8 The Semester Grade Point Average (SGPA) is calculated by dividing the sum of credit points (ΣCP) secured from all subjects/ courses registered in a semester, by the total number of credits registered during that semester. SGPA is rounded off to **two** decimal places. SGPA is thus computed as

$$\mathbf{SGPA} = \{ \ {\textstyle \sum_{i=1}^{N}} \ C_i \ \ {\textstyle G_i} \ \ {\textstyle \}} \ / \ \{ \ {\textstyle \sum_{i=1}^{N}} \ \ C_i \ \ {\textstyle \}} \ ..... \ \ For \ each \ semester,$$

where 'i' is the subject indicator index (considering all subjects in a semester), 'N' is the no. of subjects '**registered**' for the semester (as specifically required and listed under the course structure of the parent department),  $C_i$  is the no. of credits allotted to the i<sup>th</sup> subject, and  $G_i$  represents the grade points (GP) corresponding to the letter grade awarded for that i<sup>th</sup> subject.

**9.9** The Cumulative Grade Point Average (CGPA) is a measure of the overall cumulative performance of a student in all semesters considered for registration. The CGPA is the ratio of the total credit points secured by a student in **all** registered courses (of 160) in **all** semesters, and the total number of credits registered in **all** the semesters. CGPA is rounded off to **two** decimal places. CGPA is thus computed from the I year II semester onwards at the end of each semester as per the formula

CGPA = { 
$$\sum_{j=1}^{M} C_j G_j$$
 } / {  $\sum_{j=1}^{M} C_j$  } ... for all S semesters registered

#### (i.e., up to and inclusive of S semesters, $S \ge 2$ ),

where 'M' is the **total** no. of subjects (as specifically required and listed under the course structure of the parent department) the student has '**registered**' i.e., from the 1<sup>st</sup> semester onwards up to and inclusive of the 8<sup>th</sup> semester, 'j' is the subject indicator index (takes into account all subjects from 1 to 8 semesters),  $C_j$  is the no. of credits allotted to the j<sup>th</sup> subject, and  $G_j$  represents the grade points (GP) corresponding to the letter grade awarded for that j<sup>th</sup> subject. After registration and completion of I year I semester, the SGPA of that semester itself may be taken as the CGPA, as there are no cumulative effects.

#### Illustration of calculation of SGPA:

| Course/Subject | Credits | Letter<br>Grade | Grade<br>Points | Credit<br>Points   |
|----------------|---------|-----------------|-----------------|--------------------|
| Course 1       | 4       | A               | 8               | $4 \times 8 = 32$  |
| Course 2       | 4       | O               | 10              | $4 \times 10 = 40$ |



| Course 3 | 4  | C  | 5 | $4 \times 5 = 20$ |
|----------|----|----|---|-------------------|
| Course 4 | 3  | В  | 6 | $3 \times 6 = 18$ |
| Course 5 | 3  | A+ | 9 | $3 \times 9 = 27$ |
| Course 6 | 3  | С  | 5 | $3 \times 5 = 15$ |
|          | 21 |    |   | 152               |

SGPA = 152/21 = 7.24

#### Illustration of Calculation of CGPA up to 3<sup>rd</sup> Semester:

| Semester | Course/<br>Subject Title | Credits<br>Allotted | Letter<br>Grade<br>Secured | Corresponding Grade Point (GP) | Credit<br>Points<br>(CP) |
|----------|--------------------------|---------------------|----------------------------|--------------------------------|--------------------------|
| I        | Course 1                 | 3                   | A                          | 8                              | 24                       |
| I        | Course 2                 | 3                   | О                          | 10                             | 30                       |
| I        | Course 3                 | 3                   | В                          | 6                              | 18                       |
| I        | Course 4                 | 4                   | A                          | 8                              | 32                       |
| I        | Course 5                 | 3                   | A+                         | 9                              | 27                       |
| I        | Course 6                 | 4                   | С                          | 5                              | 20                       |
| II       | Course 7                 | 4                   | В                          | 6                              | 24                       |
| II       | Course 8                 | 4                   | A                          | 8                              | 32                       |
| II       | Course 9                 | 3                   | С                          | 5                              | 15                       |
| II       | Course 10                | 3                   | О                          | 10                             | 30                       |
| II       | Course 11                | 3                   | B+                         | 7                              | 21                       |
| II       | Course 12                | 4                   | В                          | 6                              | 24                       |
| II       | Course 13                | 4                   | A                          | 8                              | 32                       |
| II       | Course 14                | 3                   | О                          | 10                             | 30                       |
| III      | Course 15                | 2                   | A                          | 8                              | 16                       |
| III      | Course 16                | 1                   | С                          | 5                              | 5                        |
| III      | Course 17                | 4                   | О                          | 10                             | 40                       |
| III      | Course 18                | 3                   | B+                         | 7                              | 21                       |
| III      | Course 19                | 4                   | В                          | 6                              | 24                       |
| III      | Course 20                | 4                   | A                          | 8                              | 32                       |
| III      | Course 21                | 3                   | B+                         | 7                              | 21                       |
|          | Total<br>Credits         | 69                  |                            | Total Credit<br>Points         | 518                      |

CGPA = 518/69 = 7.51

The calculation process of CGPA illustrated above will be followed for each subsequent semester until 8<sup>th</sup> semester. The CGPA obtained at the end of 8<sup>th</sup> semester will become the final CGPA secured for entire B.Tech programme.



- **9.10** For merit ranking or comparison purposes or any other listing, **only** the '**rounded off**' values of the CGPAs will be used.
- **9.11** SGPA and CGPA of a semester will be mentioned in the semester Memorandum of Grades if all subjects of that semester are passed in first attempt. Otherwise the SGPA and CGPA shall be mentioned only on the Memorandum of Grades in which sittinghe passed his last exam in that semester. However, mandatory courses will not be taken into consideration.

#### 10.0 Passing Standards

- A student shall be declared successful or 'passed' in a semester, if he secures a  $GP \ge 5$  ('C' grade or above) in every subject/course in that semester (i.e. when the student gets an  $SGPA \ge 5.0$  at the end of that particular semester); and he shall be declared successful or 'passed' in the entire undergraduate programme, only when gets a  $CGPA \ge 5.00$  ('C' grade or above) for the award of the degree as required.
- 10.2 After the completion of each semester, a grade card or grade sheet shall be issued to all the registered students of that semester, indicating the letter grades and credits earned. It will show the details of the courses registered (course code, title, no. ofcredits, grade earned, etc.) and credits earned. There is NO exemption of credits in any case.

#### 11.0 Declaration of results

- 11.1 Computation of SGPA and CGPA are done using the procedure listed in 9.6 to 9.9.
- 11.2 For final percentage of marks equivalent to the computed final CGPA, the following formula may be used.

% of Marks = (final CGPA 
$$-0.5$$
) x 10

#### 12.0 Award of Degree

- **12.1** A student who registers for all the specified subjects/ courses as listed in the course structure and secures the required number of 160 credits (with CGPA ≥ 5.0), within 8 academic years from the date of commencement of the first academic year, shall be declared to have 'qualified' for the award of B.Tech. degree in the branch of Engineering selected at the time of admission.
- **12.2** A student who qualifies for the award of the degree as listed in item 12.1 shall beplaced in the following classes.
- 12.3 A student with final CGPA (at the end of the undergraduate programme) > 8.00, and fulfilling the following conditions shall be placed in 'First Class with Distinction'. However, he
  - (i) Should have passed all the subjects/courses in 'First Appearance' within the first 4 academic years (or 8 sequential semesters) from the date of commencement of first year first semester.



(ii) Should not have been detained or prevented from writing the semester end examinations in any semester due to shortage of attendance or any other reason.

A student not fulfilling any of the above conditions with final CGPA > 8 shall be placed in 'First Class'.

- 12.4 Students with final CGPA (at the end of the undergraduate programme)  $\geq 7.0$  but < 8.00 shall be placed in 'First Class'.
- 12.5 Students with final CGPA (at the end of the undergraduate programme)  $\geq 6.00 \text{ but} < 7.00$ , shall be placed in 'Second Class'.
- 12.6 All other students who qualify for the award of the degree (as per item 12.1), with final CGPA (at the end of the undergraduate programme)  $\geq 5.00$  but < 6, shall be placed in 'pass class'.
- **12.7** A student with final CGPA (at the end of the undergraduate programme) < 5.00 will not be eligible for the award of the degree.
- **12.8** Students fulfilling the conditions listed under item 12.3 alone will be eligible for award of 'Gold Medal'.

#### 12.9 Award of 2-Year B.Tech. Diploma Certificate

- 1. A student is awarded 2-Year UG Diploma Certificate in the concerned engineering branch on completion of all the academic requirements and earned all the 80 credits (within 4 years from the date of admission) upto B.Tech. II Year II Semester, if the student want to exit the 4-Year B.Tech. program and requests for the 2 -Year B. Tech. (UG) Diploma Certificate.
- 2. The student **once opted and awarded 2-Year UG Diploma Certificate, the student will be permitted to join** in B. Tech. III Year I Semester and continue for completion of remaining years of study for 4-Year B. Tech. Degree ONLY in the next academic year along with next batch students. *However, if any student wishesto continue the study after opting for exit, he/she should register for the subjects/courses in III Year I Semester before commencement of classwork for that semester.*
- 3. The students, who exit the 4-Year B. Tech. program after II Year of study and wish to re-join the B.Tech. program, must submit the 2 -Year B. Tech. (UG) Diploma Certificate awarded to him, subject to the eligibility for completion of Course/Degree.
- 4. A student may be permitted to take one year break after completion of II Year II Semester or B. Tech. III Year II Semester (with the permission of college Academic Committee well in advance) and can re-enter the course in **next Academic Year in the same college** and complete the course on fulfilling all the academic credentials within a stipulated duration i.e. double the duration of the course (Ex. within 8 Years for 4-Year program).



#### 13.0 Withholding of results

13.1 If the student has not paid the fees to the College at any stage, or has dues pending due to any reason whatsoever, or if any case of indiscipline is pending, the result of the student may be withheld, and the student will not be allowed to go into the next higher semester. The award or issue of the degree may also be withheld in such cases.

#### 14.0 Transitory Regulations

- A. For students detained due to shortage of attendance:
  - 1. A student who has been detained in any semester of I, II, III and IV years of NR21 regulations for want of attendance, shall be permitted to join the corresponding semester of NR23 Regulations and is required to complete the study of B.Tech. within the stipulated period of eight academic years from the date of first admission in I Year. The NR23 Academic Regulations under which a student has been readmitted shall be applicable to that student from that semester. See rule (C) for further Transitory Regulations.
- B. For students detained due to shortage of credits:
  - 1. A student of NR21 Regulations who has been detained due to lack of credits, shall be promoted to the next semester of NR23 Regulations only after acquiring the required number of credits as per the corresponding regulations of his/her first admission. The total credits required are 160 including both NR21 & NR23 regulations. The student is required to complete the study of B.Tech. within the stipulated period of eight academic years from the year of first admission. The NR23 Academic Regulations are applicable to a student from the year of readmission. See rule (C) for further Transitory Regulations.
- C. For readmitted students in NR23 Regulations:
  - 1. A student who has failed in any subject under any regulation has to pass those subjects in the same regulations.
  - 2. The maximum credits that a student acquires for the award of degree, shall be the sum of the total number of credits secured in all the regulations of his/her study including NR23 Regulations. **There is NO exemption of credits in any case**.
  - If a student is readmitted to NR23 Regulations and has any subject with 80% of syllabus common with his/her previous regulations, that particular subject in NR23 Regulations will be substituted by another subject to be suggested by the College.

Note: If a student readmitted to NR23 Regulations and has not studied any subjects/topics in his/her earlier regulations of study which is prerequisite for further subjects in NR23



Regulations, the Head of the department concerned shall conduct remedial classes to cover those subjects/topics for the benefit of the students.

#### 15.0 Student Transfers

- **15.1** There shall be no branch transfers after the completion of admission process.
- 15.2 The students seeking transfer to NRCM from various other Universities/institutions have to pass the failed subjects which are equivalent to the subjects of NRCM of NR23 regulation, and also pass the subjects of NRCM which the students have not studied at the earlier institution. Further, though the students have passed some of the subjects at the earlier institutions, if the same subjects are prescribed in different semesters of NRCM, the students have to study those subjects in NRCM in spite ofthe fact that those subjects are repeated.
- 15.3 The colleges will provide one chance to write the internal examinations in the **equivalent subject(s)** to the students transferred from other universities/institutions to NRCM who are on rolls, as per the clearance (equivalence) letter issued by the Academic Committee.

#### **16.0** Scope

- **16.1** The academic regulations should be read as a whole, for the purpose of any interpretation.
- 16.2 In case of any doubt or ambiguity in the interpretation of the above rules, the decision of the Principal is final.
- 16.3 The College may change or amend the academic regulations, course structure or syllabi at any time, and the changes or amendments made shall be applicable to all students with effect from the dates notified by the College authorities.
- **16.4** Where the words "he", "him", "his", occur in the regulations, they include "she", "her", "hers".

\*\*\*\*



## NARSIMHAREDDY ENGINEERING COLLEGE UGC AUTONOMOUS INSTITUTION

Maisammaguda (V), Kompally - 500100, Secunderabad, Telangana state, India

#### ACADEMIC REGULATIONS FOR B.TECH (LATERAL ENTRY SCHEME) FROM THE AY 2024-25

#### 1. Eligibility for the award of B.Tech Degree (LES)

The LES students after securing admission shall pursue a course of study for not less than three academic years and not more than six academic years.

- 2. The student shall register for 120 credits and secure 120 credits with CGPA  $\geq$  5 from II year to IV-year B.Tech. programme (LES) for the award of B.Tech. degree.
- 3. The students, who fail to fulfil the requirement for the award of the degree in six academic years from the year of admission, shall forfeit their seat in B.Tech.
- 4. The attendance requirements of B. Tech. (Regular) shall be applicable to B.Tech.(LES).

#### 5. Promotion rule

| S. No | Promotion                                                 | Conditions to be fulfilled                                                                                                                                                                                                                                                                       |
|-------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | Second year first semester to second year second semester | Regular course of study of second year first semester.                                                                                                                                                                                                                                           |
| 2     | Second year second semester to third year first semester  | (i) Regular course of study of second year second semester.  (ii) Must have secured at least 24 credits out of 40 credits i.e., 60% credits up to second year second semester from all the relevant regular and supplementary examinations, whether the student takes those examinations or not. |
| 3     | Third year first semester to third year second semester   | Regular course of study of third year first semester.                                                                                                                                                                                                                                            |
| 4     | Third year second semester to fourth year first semester  | <ul><li>(i) Regular course of study of third year second semester.</li><li>(ii) Must have secured at least 48 credits out of 80 credits i.e., 60% credits up to</li></ul>                                                                                                                        |



|   |                                                           | third year second semester from all the<br>relevant regular and supplementary<br>examinations, whether the student takes<br>those examinations or not. |
|---|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 | Fourth year first semester to fourth year second semester | Regular course of study of fourth year first semester.                                                                                                 |

- 6. All the other regulations as applicable to B. Tech. 4-year degree course (Regular) will hold good for B. Tech. (Lateral Entry Scheme).
- 7. LES students are not eligible for 2-Year B. Tech. Diploma Certificate.

\*\*\*\*



#### **Malpractices Rules**

#### **Disciplinary Action For / Improper Conduct in Examinations**

|        | Nature of Malpractices/Improper                                                                                                                                                                                                                                                                                                                                                                                                        | Punishment                                                                                                                                                                                                                                                                                                                                                                                                |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | conduct  If the student:                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1. (a) | Possesses or keeps accessible in examination hall, any paper, note book, programmable calculators, cell phones, pager, palm computers or any other form of material concerned with orrelated to the subject of the examination (theory or practical) in which student is appearing but has not made use of (material shall include any marks on the body of the student which can be used as an aid in the subject of the examination) | Expulsion from the examination hall and cancellation of the performance in that subject only.                                                                                                                                                                                                                                                                                                             |
| (b)    | Gives assistance or guidance or receives it from any other student orally or byany other body language methods or communicates through cell phones with any student or persons in or outside the exam hall in respect of any matter.                                                                                                                                                                                                   | Expulsion from the examination hall and cancellation of the performance in that subject only of all the students involved. In case of an outsider, he will be handed over to the police and a case is registered against him.                                                                                                                                                                             |
| 2.     | Has copied in the examination hall from any paper, book, programmable calculators, palm computers or any other form of material relevant to the subject of the examination (theory or practical) in which the student is appearing.                                                                                                                                                                                                    | Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the student has already appeared including practical examinations and project work and shall not be permitted to appear for the remaining examinations of the subjects of that semester/year.  The hall ticket of the student is to be cancelled.                                          |
| 3.     | Impersonates any other student in connection with the examination.                                                                                                                                                                                                                                                                                                                                                                     | The student who has impersonated shall be expelled from examination hall. The student is also debarred and forfeits the seat. The performance of the original student who has been impersonated, shall be cancelled in all the subjects of the examination (including practicals and project work) already appeared and shall not be allowed to appear for examinations of the remaining subjects of that |



|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | semester/year. The student is also debarred for two consecutive semesters from class work and all semester end examinations. The continuation of the course by the student is subject to the academic regulations in connection with forfeiture of seat. If the imposter is anoutsider, he will be handed over to the policeand a case is registered against him.                                                                                                                                                                            |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4. | Smuggles in the answer book or additional sheet or takes out or arranges to send out the question paper during the examination or answer book oradditional sheet, during or after the examination.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the student has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The student is also debarred for two consecutive semesters from class work and all semester end examinations. The continuation of the course by the student is subject to the academic regulations in connection with forfeiture of seat. |
| 5. | Uses objectionable, abusive or offensive language in the answer paper or in letters to the examiners or writes to the examiner requesting him to award pass marks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cancellation of the performance in that subject.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6. | Refuses to obey the orders of the chief superintendent/assistant — superintendent / any officer on duty or misbehaves or creates disturbance of any kind in and around the examination hall or organizes a walk out or instigates others to walk out, or threatens the officer-in charge or any person on duty in or outside the examination hall of any injury to his person or to any of his relations whether by words, either spoken or written or by signs or by visible representation, assaults the officer-in-charge, or any person on duty in or outside the examination hall or any of his relations, or indulges in any other act of misconduct or mischief which result in damage to or destruction of | In case of students of the college, they shall be expelled from examination halls and cancellation of their performance in that subject and all other subjects the student(s) has (have) already appeared and shall not be permitted to appear for the remaining examinations of the subjects of that semester/year. The students also are debarred and forfeit their seats. In case of outsiders, they will be handed over to the police and a police case is registered against them.                                                      |



|     | property in the examination hall or any part of the college campus or engages in any other act which in the opinion of the officer on duty amounts to use of unfair means or misconduct or has the tendency to disrupt the orderly conduct of the examination. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7.  | Leaves the exam hall taking away answer script or intentionally tears offthe script or any part thereof inside or outside the examination hall.                                                                                                                | Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the student has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The student is also debarred for two consecutive semesters from class work and all semester end examinations. The continuation of the course by the student is subject to the academic regulations in connection with forfeiture of seat. |
| 8.  | Possesses any lethal weapon or firearm in the examination hall.                                                                                                                                                                                                | Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the student has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The student is also debarred and forfeits the seat.                                                                                                                                                                                       |
| 9.  | If student of the college, who is not a student for the particular examination or any person not connected with the college indulges in any malpractice or improper conduct mentioned in clause 6 to 8.                                                        | Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the student has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The student is also debarred and forfeits the seat.  Person(s) who do not belong to the college will be handed over to the police and, a police case will be registered against them.                                                     |
| 10. | Comes in a drunken condition to the examination hall.                                                                                                                                                                                                          | Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the student has already appeared for including practical examinations                                                                                                                                                                                                                                                                                                                                                         |



|     |                                                                                                                                                                                            | and project work and shall not be permitted for<br>the remaining examinations of the subjects of that<br>semester/year.                                                                   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11. | Copying detected on the basis of internal evidence, such as, during valuation or during special scrutiny.                                                                                  | Cancellation of the performance in that subject and all other subjects the student has appeared for including practical examinations and project work of that semester/year examinations. |
| 12. | If any malpractice is detected which is not covered in the above clauses 1 to 11 shall be reported to the College Malpractice committee for further action to award a suitable punishment. |                                                                                                                                                                                           |

\* \* \* \* \*

Accredited by NBA & NAAC with 'A' Grade Approved by AICTE Permanently affiliated to JNTUH

#### INSTITUTION VISION

To produce competent professionals who can contribute to the industry, research and societal benefits with environment consciousness and ethical Values.

#### INSTITUTION MISSION

- Adapt continuous improvements in innovative teaching-learning practices and state-of-the- art infrastructure to transform students as competent professionals and entrepreneurs in multidisciplinary fields.
- Develop an innovative ecosystem with strong involvement and participation of students and faculty members.
- Impart National development spirit among the students to utilize their knowledge and skills for societal benefits with ethical values.

#### **DEPARTMENT VISION**

To provide a professional and conducive environment to foster outcome based teaching learning with intellectual, ethical and cultural sensitivities to lead in the field of Mechanical Engineering.

#### **DEPARTMENT MISSION**

- To produce skilled graduates with leadership qualities and team working abilities, thus enhancing their employability and self sustainability in the environment
- To emerge as a centre for research & consultancy in the field of Mechanical Engineering and be an incubation centre for Technocrats
- To inculcate the habit of continuous learning through advanced technologies with ethical values

#### **PROGRAM OUTCOMES (POs)**

- 1. **Engineering Knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem Analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. **Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10.**Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11.**Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. **Life-long learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

#### PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

**PEO1:** To apply knowledge of fundamental sciences and engineering skills required to solve mechanical engineering problems of a complex kind.

**PEO2:** To function as a coherent unit leading multidisciplinary design teams, and deliver results based on sound principles considering functionality, elegance, safety and sustainability.

**PEO3:** To have an outlook beyond mechanical engineering and step into various interdisciplinary streams and to pursue professional practices in industries.

#### PROGRAM SPECIFIC OBJECTIVES (PSOs)

**PSO1:** Be able to develop competency in formulating design using basic mathematics and modern tools.

**PSO2:** Be able to manufacture a product to meet the societal needs.

**PSO3:** Be able to work professionally in thermal engineering domain area.



Maisammaguda (V), Kompally - 500100, Secunderabad, Telangana state, India

Accredited by NBA & NAAC with 'A' Grade Approved by AICTE Permanently affiliated to JNTUH

## B Tech in MECHANICAL ENGINEERING COURSE STRUCTURE & SYLLABUS (NR23 Regulations) Applicable from AY 2023-24 Batch

#### I YEAR I SEMESTER

| S.No. | Course<br>Code | Course Title                                            | С  | L  | T | P | Credits |
|-------|----------------|---------------------------------------------------------|----|----|---|---|---------|
| 1     | 23MA101        | Matrices and Calculus                                   | BS | 3  | 1 | 0 | 4       |
| 2     | 23CH102        | Engineering Chemistry                                   | BS | 3  | 1 | 0 | 4       |
| 3     | 23EN103        | English for Skill Enhancement                           | HS | 2  | 0 | 0 | 2       |
| 4     | 23ME104        | Engineering Mechanics                                   | ES | 3  | 0 | 0 | 3       |
| 5     | 23CS105        | Programming for Problem Solving                         | ES | 3  | 0 | 0 | 3       |
| 6     | 23EN106        | English Language And Communication<br>Skills Laboratory | HS | 0  | 0 | 2 | 1       |
| 7     | 23CS107        | Programming for Problem Solving<br>Laboratory           | ES | 0  | 0 | 2 | 1       |
| 8     | 23CH108        | Engineering Chemistry Laboratory                        | BS | 0  | 0 | 2 | 1       |
| 9     | 23ME109        | Elements of Mechanical Engineering                      | ES | 0  | 0 | 2 | 1       |
|       |                | Induction Program                                       | -  | 1  | _ | 1 | -       |
|       |                | Total                                                   |    | 14 | 2 | 8 | 20      |

#### I YEAR II SEMESTER

| S.No. | Course<br>Code | Course Title                                        | C  | L  | T | P  | Credits |
|-------|----------------|-----------------------------------------------------|----|----|---|----|---------|
| 1     | 23MA201        | Ordinary Differential Equations and Vector Calculus | BS | 3  | 1 | 0  | 4       |
| 2     | 23PH202        | Applied Physics                                     | BS | 3  | 1 | 0  | 4       |
| 3     | 23ME203        | Computer Aided Engineering Graphics                 | ES | 1  | 0 | 4  | 3       |
| 4     | 23ME204        | Engineering Materials                               | ES | 2  | 0 | 0  | 2       |
| 5     | 23PH205        | Applied Physics laboratory                          | BS | 0  | 0 | 3  | 1.5     |
| 6     | 23CS206        | Python Programming Laboratory                       | ES | 1  | 0 | 2  | 2       |
| 7     | 23ME207        | Fuels & Lubricants Laboratory                       | ES | 0  | 0 | 2  | 1       |
| 8     | 23ME208        | Engineering Workshop                                | ES | 1  | 0 | 3  | 2.5     |
|       |                | Total                                               |    | 11 | 2 | 14 | 20      |

#### II YEAR I SEMESTER

| 11 1  | LAKISEW        | ESTER                                             |    |    |   |   |         |
|-------|----------------|---------------------------------------------------|----|----|---|---|---------|
| S.No. | Course<br>Code | Course Title                                      | c  | L  | Т | P | Credits |
| 1     | 23MA304        | Probability, Statistics & Complex Variables       | BS | 3  | 1 | 0 | 4       |
| 2     | 23ME302        | Mechanics of Solids                               | PC | 3  | 0 | 0 | 3       |
| 3     | 23ME303        | Metallurgy & Material Science                     | PC | 3  | 0 | 0 | 3       |
| 4     | 23ME304        | Production Technology                             | PC | 3  | 0 | 0 | 3       |
| 5     | 23ME305        | Thermodynamics                                    | PC | 3  | 1 | 0 | 4       |
| 6     | 23ME306        | Production Technology Laboratory                  | PC | 0  | 0 | 2 | 1       |
| 7     | 23ME307        | Material Science & Mechanics of Solids Laboratory | PC | 0  | 0 | 2 | 1       |
| 8     | 23ME308        | Computer Aided Machine Drawing                    | PC | 0  | 0 | 2 | 1       |
| 9     | *MC3002        | Constitution of India                             | MC | 3  | 0 | 0 | 0       |
|       |                | Total                                             |    | 18 | 2 | 6 | 20      |

#### II YEAR II SEMESTER

| S.No. | Course Code  | Course Title                                               | С  | L  | T | P  | Credits |
|-------|--------------|------------------------------------------------------------|----|----|---|----|---------|
| 1     | 1 23EE401    | Basic Electrical and Electronics<br>Engineering            | ES | 3  | 0 | 0  | 3       |
| 2     | 23ME402      | Kinematics of Machinery                                    | PC | 3  | 0 | 0  | 3       |
| 3     | 1 73MH4H3    | Fluid Mechanics & Hydraulic<br>Machines                    | PC | 3  | 0 | 0  | 3       |
| 4     | 23ME404      | IC Engines & Gas Turbines                                  | PC | 3  | 0 | 0  | 3       |
| 5     | 23ME405      | Instrumentation and Control Systems                        | PC | 3  | 0 | 0  | 3       |
| 6     | 1 23EE406    | Basic Electrical and Electronics<br>Engineering Laboratory | ES | 0  | 0 | 2  | 1       |
| 7     | 1 731/184117 | Fluid Mechanics & Hydraulic<br>Machines Laboratory         | PC | 0  | 0 | 2  | 1       |
| 8     | 1 23WF4U8    | Instrumentation and Control Systems<br>Laboratory          | PC | 0  | 0 | 2  | 1       |
| 9     | 1 73WH4H9    | Real-time Research Project/ Field-<br>Based Project        | PW | 0  | 0 | 4  | 2       |
| 10    | *MC4002      | Gender Sensitization Lab                                   | MC | 0  | 0 | 2  | 0       |
|       |              | Total                                                      | •  | 15 | 0 | 12 | 20      |

#### III YEAR I SEMESTER

| S.No. | Course Code | Course Title                               | С  | L  | Т | P | Credits |
|-------|-------------|--------------------------------------------|----|----|---|---|---------|
| 1     | 23ME501     | Dynamics of Machinery                      | PC | 3  | 0 | 0 | 3       |
| 2     | 23ME502     | Design of Machine Elements                 | PC | 3  | 0 | 0 | 3       |
| 3     | 23ME503     | Metrology & Machine Tools                  | PC | 3  | 0 | 0 | 3       |
| 4     | 23MB504     | Business Economics & Financial<br>Analysis | HS | 3  | 0 | 0 | 3       |
| 5     | 23ME505     | Steam Power & Jet Propulsion               | PC | 3  | 0 | 0 | 3       |
| 6     | 23ME506     | CAD/CAM                                    | PC | 2  | 0 | 0 | 2       |
| 7     | 23ME507     | Thermal Engineering Laboratory             | PC | 0  | 0 | 2 | 1       |
| 8     | 23ME508     | Metrology & Machine Tools Laboratory       | PC | 0  | 0 | 2 | 1       |
| 9     | 23ME509     | Kinematics & Dynamics Laboratory           | PC | 0  | 0 | 2 | 1       |
| 10    | *MC5001     | Intellectual Property Rights               | MC | 3  | 0 | 0 | 0       |
|       |             | Total                                      |    | 20 | 0 | 6 | 20      |

#### III YEAR II SEMESTER

| S.No. | Course Code | Course Title                                        | C  | L  | T | P  | Credits |
|-------|-------------|-----------------------------------------------------|----|----|---|----|---------|
| 1     | 23ME601     | Machine Design                                      | PC | 3  | 0 | 0  | 3       |
| 2     | 23ME602     | Heat Transfer                                       | PC | 3  | 0 | 0  | 3       |
| 3     | 23ME603     | Finite Element Methods                              | PC | 3  | 0 | 0  | 3       |
| 4     |             | Professional Elective - I                           | PE | 3  | 0 | 0  | 3       |
| 5     |             | Open Elective - I                                   | OE | 3  | 0 | 0  | 3       |
| 6     | 23ME611     | Heat Transfer Lab                                   | PC | 0  | 0 | 2  | 1       |
| 7     | 23ME612     | Computer Aided Engineering<br>Laboratory            | PC | 0  | 0 | 2  | 1       |
| 8     |             | Advanced English Communication<br>Skills Laboratory | HS | 0  | 0 | 2  | 1       |
| 9     | 23ME614     | Industry Oriented Mini Project/<br>Internship       | PW | 0  | 0 | 4  | 2       |
| 10    | *MC6001     | Environmental Science                               | MC | 3  | 0 | 0  | 0       |
|       |             | Total                                               |    | 18 | 0 | 10 | 20      |

| Professional Elective-I |                                    |  |  |  |  |
|-------------------------|------------------------------------|--|--|--|--|
| Code Course Title       |                                    |  |  |  |  |
| 23ME604                 | Unconventional Machining Processes |  |  |  |  |
| 23ME605                 | Power Plant Engineering            |  |  |  |  |
| 23ME606                 | Mechanical Vibrations              |  |  |  |  |
| 23ME607                 | Microprocessors in Automation      |  |  |  |  |

|           | Open Elective-I |                                             |  |  |  |  |  |
|-----------|-----------------|---------------------------------------------|--|--|--|--|--|
| BRANCHES  | Course<br>Code  | Course Title                                |  |  |  |  |  |
|           | 23CE611         | Disaster Preparedness & Planning Management |  |  |  |  |  |
| CIVIL     | 23CE612         | Building Management Systems                 |  |  |  |  |  |
| CIVIL     | 23CE613         | Environmental Impact Assessment             |  |  |  |  |  |
|           | 23CE614         | Hydrogeology                                |  |  |  |  |  |
| EEE       | 23EE606         | Renewable Energy Sources                    |  |  |  |  |  |
| EEE       | 23EE607         | Fundamental of Electric Vehicles            |  |  |  |  |  |
|           | 23ME608         | Operation Research                          |  |  |  |  |  |
| MECH      | 23ME609         | Fundamentals of Mechanical Engineering      |  |  |  |  |  |
|           | 23ME610         | Metallurgy of Non-Metallurgists             |  |  |  |  |  |
|           | 23EC614         | Fundamentals of Internet of Things          |  |  |  |  |  |
| ECE       | 23EC615         | Principles of Signal Processing             |  |  |  |  |  |
|           | 23EC616         | Digital Electronics for Engineering         |  |  |  |  |  |
| COE       | 23CS613         | Data Structures                             |  |  |  |  |  |
| CSE       | 23CS614         | Database Management Systems                 |  |  |  |  |  |
| ľТ        | 23IT612         | Java Programming                            |  |  |  |  |  |
| 11        | 23IT613         | Object Oriented Programming using C++       |  |  |  |  |  |
| CCE(CC)   | 23CY614         | Cyber Laws                                  |  |  |  |  |  |
| CSE(CS)   | 23CY615         | Ethical Hacking                             |  |  |  |  |  |
| COE(AIMI) | 23AM612         | Fundamentals of AI                          |  |  |  |  |  |
| CSE(AIML) | 23AM613         | Machine Learning Basics                     |  |  |  |  |  |

#### IV YEAR I SEMESTER

| S. No. | Course Code | Course Title                     | С  | L  | T | P  | Credits |
|--------|-------------|----------------------------------|----|----|---|----|---------|
| 1      | 23ME701     | Industrial Management            | PC | 2  | 0 | 0  | 2       |
| 2      | 23ME702     | Refrigeration & Air Conditioning | PC | 3  | 0 | 0  | 3       |
| 3      |             | Professional Elective – II       | PE | 3  | 0 | 0  | 3       |
| 4      |             | Professional Elective – III      | PE | 3  | 0 | 0  | 3       |
| 5      |             | Professional Elective - IV       | PE | 3  | 0 | 0  | 3       |
| 6      |             | Open Elective - II               | OE | 3  | 0 | 0  | 3       |
| 7      | 23ME718     | Project Stage - I                | PW | 0  | 0 | 6  | 3       |
|        |             | Total                            |    | 17 | 0 | 06 | 20      |

| Professional Elective-II |                                                   |  |  |  |  |  |
|--------------------------|---------------------------------------------------|--|--|--|--|--|
| Code Course Title        |                                                   |  |  |  |  |  |
| 23ME703                  | Artificial Intelligence in Mechanical Engineering |  |  |  |  |  |
| 23ME704                  | Automobile Engineering                            |  |  |  |  |  |
| 23ME705                  | Industrial Robotics                               |  |  |  |  |  |
| 23ME706                  | Mechatronics                                      |  |  |  |  |  |

|                   | Professional Elective-III     |  |  |  |  |
|-------------------|-------------------------------|--|--|--|--|
| Code Course Title |                               |  |  |  |  |
| 23ME707           | Production Planning & Control |  |  |  |  |
| 23ME708           | Computational Fluid Dynamics  |  |  |  |  |
| 23ME709           | Composite Materials           |  |  |  |  |
| 23ME710           | Solar Energy Technology       |  |  |  |  |

| Professional Elective-IV |                                 |  |  |  |  |
|--------------------------|---------------------------------|--|--|--|--|
| Code                     | Code Course Title               |  |  |  |  |
| 23ME711                  | Re-Engineering                  |  |  |  |  |
| 23ME712                  | Non-Conventional Energy Sources |  |  |  |  |
| 23ME713                  | Operations Research             |  |  |  |  |
| 23ME714                  | Electric and Hybrid Vehicles    |  |  |  |  |

| Open Elective - II |                |                                                      |  |  |  |  |
|--------------------|----------------|------------------------------------------------------|--|--|--|--|
| DEPARMENT          | Course<br>Code | Course Title                                         |  |  |  |  |
|                    | 23CE714        | Remote Sensing & Geographical Information<br>Systems |  |  |  |  |
| CIVIL              | 23CE715        | Sustainable Infrastructure Development               |  |  |  |  |
|                    | 23CE716        | Solid Waste Management                               |  |  |  |  |
|                    | 23CE717        | Smart Cities                                         |  |  |  |  |
| EEE                | 23EE708        | Utilization of Electric Energy                       |  |  |  |  |
| EEE                | 23EE709        | Energy Storage Systems                               |  |  |  |  |
| MECH               | 23ME715        | Fabrication Processes                                |  |  |  |  |
|                    | 23EC710        | Electronic Sensors                                   |  |  |  |  |
| ECE                | 23EC711        | Electronics for Health Care                          |  |  |  |  |
|                    | 23EC712        | Telecommunications for Society                       |  |  |  |  |
| CSE                | 23CS716        | Operating Systems                                    |  |  |  |  |
| CSE                | 23CS717        | Software Engineering                                 |  |  |  |  |
| IT                 | 23IT716        | Full Stack development                               |  |  |  |  |
| 11                 | 23IT717        | Scripting Languages                                  |  |  |  |  |
| CSE(CS)            | 23CY716        | Computer Security & Audit Assurance                  |  |  |  |  |
| CSE(CS)            | 23CY717        | Social Media Security                                |  |  |  |  |
| CCE(AIMI)          | 23AM716        | Introduction to Natural Language Processing          |  |  |  |  |
| CSE(AIML)          | 23AM717        | AI applications                                      |  |  |  |  |

#### IV YEAR II SEMESTER

| S.No. | Course Code | Course Title               | С  | L | Т | P  | Credits |
|-------|-------------|----------------------------|----|---|---|----|---------|
| 1     |             | Professional Elective – V  | PE | 3 | 0 | 0  | 3       |
| 2     |             | Professional Elective - VI | PE | 3 | 0 | 0  | 3       |
| 3     |             | Open Elective - III        | OE | 3 | 0 | 0  | 3       |
| 4     | 23ME811     | Project Stage – II         | PW | 0 | 0 | 22 | 11      |
|       |             | Total                      |    | 9 | 0 | 22 | 20      |

| Professional Elective-V |                                    |  |  |  |  |
|-------------------------|------------------------------------|--|--|--|--|
| Code Course Title       |                                    |  |  |  |  |
| 23ME801                 | Automation in Manufacturing        |  |  |  |  |
| 23ME802                 | Turbo Machinery                    |  |  |  |  |
| 23ME803                 | Additive Manufacturing             |  |  |  |  |
| 23ME804                 | Energy Conservation and Management |  |  |  |  |

| Professional Elective-VI |                          |  |  |  |  |
|--------------------------|--------------------------|--|--|--|--|
| Code                     | Code Course Title        |  |  |  |  |
| 23ME805                  | Industry 4.0             |  |  |  |  |
| 23ME806                  | Fluid Power System       |  |  |  |  |
| 23ME807                  | Fuzzy Logic and ANN      |  |  |  |  |
| 23ME808                  | Total Quality Management |  |  |  |  |

|                | Open Elective - III |                                               |  |  |  |  |
|----------------|---------------------|-----------------------------------------------|--|--|--|--|
| DEPART<br>MENT | Course<br>Code      | Course Title                                  |  |  |  |  |
|                | 23CE808             | Energy Efficient Buildings                    |  |  |  |  |
| CIVIL          | 23CE809             | Multi Criterion Decision Making               |  |  |  |  |
|                | 23CE810             | Environmental Pollution                       |  |  |  |  |
| EEE            | 23EE807             | Charging Infrastructure for Electric Vehicles |  |  |  |  |
| EEE            | 23EE808             | Electrical Safety Engineering                 |  |  |  |  |
| MEGII          | 23ME809             | Reliability Engineering                       |  |  |  |  |
| MECH           | 23ME810             | Industrial Management                         |  |  |  |  |
|                | 23EC808             | Measuring Instruments                         |  |  |  |  |
| ECE            | 23EC809             | Communication Technologies                    |  |  |  |  |
|                | 23EC810             | Fundamentals of Social Networks               |  |  |  |  |
| CSE            | 23CS808             | Algorithms Design and Analysis                |  |  |  |  |
| CSE            | 23CS809             | Introduction to Computer Networks             |  |  |  |  |
| IТ             | 23IT808             | Big Data Technologies                         |  |  |  |  |
| 11             | 23IT809             | Dev Ops                                       |  |  |  |  |
| CCE(CC)        | 23CY808             | Data Privacy                                  |  |  |  |  |
| CSE(CS)        | 23CY809             | 5G Technologies                               |  |  |  |  |
| CSE(AIMI)      | 23AM812             | Chatbots                                      |  |  |  |  |
| CSE(AIML)      | 23AM813             | Genetic Algorithms & Fuzzy logic              |  |  |  |  |

#### MATRICES AND CALCULUS

#### B Tech I Year I Sem

| Course Code            | Category                | Hours/<br>Week |   | Credits | Max      | Maximum Marks    |     |       |
|------------------------|-------------------------|----------------|---|---------|----------|------------------|-----|-------|
| 23MA101                | Basic Sciences          | L              | T | P       | 4        | CIA              | SEE | TOTAL |
| 23WIA101               |                         | 3              | 1 | 0       | 4        | 40               | 60  | 100   |
| Contact<br>Classes: 48 | Tutorial<br>Classes: 16 | Practical Cla  |   |         | Classes: | Total Classes:64 |     |       |

**Pre-requisites:** Mathematical Knowledge at pre-university level

#### Course Objectives: To learn

- 1. Concept of a rank of the matrix and applying this concept to know the consistency and solving the system of linear equations.
- 2. Concept of Eigen values and Eigen vectors and to reduce the quadratic form to canonical form
- 3. Geometrical approach to the mean value theorems and their application to the mathematical problems and evaluation of improper integrals using Beta and Gamma functions.
- 4. Partial differentiation and finding maxima and minima of function of two or more variables.
- 5. Evaluation of multiple integrals and their applications

#### Course outcomes: The student will be able to

- 1. Solve the system of Linear equations in various engineering problems
- 2. Find the Eigen values and Eigen vectors and reduce the quadratic form to canonical form using orthogonal transformations.
- 3. Solve the applications on the mean value theorems and evaluate the improper integrals using Beta and Gamma functions
- 4. Find the extreme values of functions of two variables with/without constraints.
- 5. Evaluate the multiple integrals and apply the concept to find areas, volumes

#### **UNIT - I: Matrices**

Rank of a matrix by Echelon form and Normal form, Inverse of Non-singular matrices by Gauss-Jordan method, System of linear equations: linearly dependent and linearly independent solutions, Solving system of Homogeneous and Non-Homogeneous equations by Gauss elimination method, Gauss Seidel Iteration Method, L-U decomposition method

**UNIT - II: Eigen values and Eigen vectors** Linear Transformation and Orthogonal Transformation: Eigen values, Eigenvectors and their properties, Diagonalization of a matrix, Cayley-Hamilton Theorem (without proof), finding inverse and power of a matrix by Cayley-Hamilton Theorem, Quadratic forms and Nature of the Quadratic Forms, Reduction of Quadratic form to canonical forms by Orthogonal Transformation.

**UNIT - III: Calculus** Mean value theorems: Rolle's theorem, Lagrange's Mean value theorem with their Geometrical Interpretation and applications, Cauchy's Mean value Theorem, Taylor's Series, Maclaurin's series. Applications of definite integrals to evaluate surface areas and volumes of revolutions of curves (Only in Cartesian coordinates), Definition of Improper Integral: Beta and Gamma functions and their applications.

**UNIT - IV: Multivariable Calculus (Partial Differentiation and applications)**Definitions of Limit and continuity. Partial Differentiation: Euler's Theorem, Total derivative, Jacobian, Functional dependence & independence. Applications: Maxima and minima of functions of two variables and three variables using method of Lagrange multipliers.

**UNIT-V: Multivariable Calculus (Integration)** Evaluation of Double Integrals (Cartesian and polar coordinates), change of order of integration (only Cartesian form), Evaluation of Triple Integrals: Change of variables (Cartesian to polar) for double and (Cartesian to Spherical and Cylindrical polar coordinates) for triple integrals. Applications: Areas and volumes (by double integrals).

#### **TEXT BOOKS:**

- 1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.
- 2. R.K. Jain and S.R.K. Iyengar, Advanced Engineering Mathematics, Narosa Publications, 5 th Editon, 2016.

#### REFERENCE BOOKS:

- 1. Erwin kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
- 2. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9thEdition, Pearson, Reprint, 2002.
- 3. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.
- 4. H. K. Dass and Er. Rajnish Verma, Higher Engineering Mathematics, S Chand and Company Limited, New Delh

### **ENGINEERING CHEMISTRY**

#### B Tech I Year I Sem

| Course Code            | Category                |                  | our:<br>Wee    | •      | Credits       | Max       | Maximum Marks |              |
|------------------------|-------------------------|------------------|----------------|--------|---------------|-----------|---------------|--------------|
| 23CH102                | Basic Sciences          | L<br>3           | T <sub>1</sub> | P<br>0 | 4             | CIA<br>40 | SEE<br>60     | TOTAL<br>100 |
| Contact<br>Classes: 48 | Tutorial<br>Classes: 16 | Practical Classe |                |        | l<br>Classes: |           |               | sses:64      |

# **BCourse Objectives:**

- 1. To bring adaptability to new developments in Engineering Chemistry and to acquire the skills required to become a perfect engineer.
- 2. To include the importance of water in industrial usage, fundamental aspects of battery chemistry, significance of corrosion and its control to protect the structures.
- 3. To provide fundamental knowledge on properties and applications of polymers & to learn about polymers in a particular application area.
- 4. To impart knowledge about various types of fuels and their combustion.
- 5. To acquire required knowledge about engineering materials like cement, smart materials and Lubricants.

# **Course Outcomes:**

- 1. The students are able to understand the basic properties of water and its usage in domestic and industrial purposes.
- 2. Students will acquire the basic knowledge of electrochemical procedures related to corrosion and its control.
- 3. Classify and characterize different polymer engineering materials and apply its knowledge to select suitable materials for specific applications.
- 4. To be able to understand various types of fuels and the advantages of alternate fuels over conventional sources.
- 5. They can predict potential applications of chemistry and practical utility in order to become good engineers and entrepreneurs.

# UNIT - I: Water and its treatment: [8]

Introduction to Water and its types – related numerical's. Estimation of hardness of water by complexometric method- related numerical. Potable water and its specifications – Steps involved in the treatment of potable water – Disinfection of potable water by chlorination and break – point chlorination –. Defluoridation – Determination of Fluoride ion by ion- selective electrode method.

Boiler troubles: Sludges, Scales and Caustic embrittlement. Internal treatment of Boiler feed water - Calgon conditioning - Phosphate conditioning - Colloidal conditioning, External treatment methods - Softening of water by ion- exchange processes. Desalination of water - Reverse osmosis.

# UNIT - II: Battery Chemistry & Corrosion [8]

Introduction - Classification of batteries- primary, secondary and reserve batteries with examples. Basic requirements for commercial batteries. Construction, working and applications of: Zn-air and Lithium ion battery, Applications of Li-ion battery to electrical vehicles. Fuel Cells- Differences between battery and a fuel cell, Construction and applications of Hydrogen oxygen fuel cell and Solid oxide fuel cell. Microbial fuel cell. Solar cells - Introduction and applications of Solar cells.

**Corrosion:** Causes and effects of corrosion – theories of chemical and electrochemical corrosion – mechanism of electrochemical corrosion, Types of corrosion: Galvanic, water-line and pitting corrosion. Factors affecting rate of corrosion, Corrosion control methods- Cathodic protection – Sacrificial anode and impressed current methods.

# UNIT - III: Polymeric materials: [8]

Definition – Classification of polymers with examples – Types of polymerization – addition (free radical addition) and condensation polymerization with examples – Nylon 6:6, Terylene

**Fibers**: Properties and engineering applications of - Nylon 6:6, Terylene.

**Plastics:** Definition and characteristics- thermoplastic and thermosetting plastics, Properties and engineering applications of PVC and Bakelite, Teflon, Fiber reinforced plastics (FRP)

Rubbers: Natural rubber and its vulcanization.

**Elastomers:** Characteristics –preparation – properties and applications of Buna-S, Butyl and Thiokol rubber.

**Conducting polymers:** Characteristics and Classification with examples-mechanism of conduction in trans-poly acetylene and applications of conducting polymers.

**Biodegradable polymers:** Concept and advantages - Polylactic acid and poly vinyl alcohol and their applications.

# UNIT - IV: Energy Sources: [8]

Introduction, Calorific value of fuel – HCV, LCV- Dulongs formula. Classification- solid fuels: coal – analysis of coal – proximate and ultimate analysis and their significance. Liquid fuels – petroleum and its refining, cracking types – moving bed catalytic cracking. Knocking – octane and cetane rating, synthetic petrol - Fischer-Tropsch's process; Gaseous fuels – composition and uses of natural gas, LPG and CNG, Biodiesel – Transesterification, advantages. Alternate fuels.

# UNIT - V: Engineering Materials: [8]

**Cement:** Portland cement, its composition, Setting and hardening of cement

**Smart materials and their engineering applications** Shape memory materials- Poly urethane, Thermo responsive materials- Polyacryl amides, Poly vinyl amides

**Lubricants:** Classification of lubricants with examples-characteristics of a good lubricant - mechanism of lubrication (thick film, thin film and extreme pressure)-properties of lubricants: viscosity, cloud point, pour point, flash point and fire point.

### TEXT BOOKS:

- 1. Engineering Chemistry by P.C. Jain and M. Jain, Dhanpatrai Publishing Company, 2010
- 2. Engineering Chemistry by Rama Devi, Venkata Ramana Reddy and Rath, Cengage learning, 2016
- 3. A text book of Engineering Chemistry by M. Thirumala Chary, E. Laxminarayana and K. Shashikala, Pearson Publications, 2021.
- 4. Textbook of Engineering Chemistry by Jaya Shree Anireddy, Wiley Publications.

- 1. Engineering Chemistry by Shikha Agarwal, Cambridge University Press, Delhi (2015)
- 2. Engineering Chemistry by Shashi Chawla, Dhanpatrai and Company (P) Ltd. Delhi (2011)

### ENGLISH FOR SKILL ENHANCEMENT

#### B Tech I Year I Sem

| Course Code            | Category                 |                         | lour:<br>Wee | •      | Credits  | Max       | Maximum Marks |              |
|------------------------|--------------------------|-------------------------|--------------|--------|----------|-----------|---------------|--------------|
| 23EN103                | Basic Sciences           | L<br>2                  | T<br>0       | P<br>0 | 2        | CIA<br>40 | SEE<br>60     | TOTAL<br>100 |
| Contact<br>Classes: 32 | Tutorial<br>Classes: Nil | Practical Classe<br>Nil |              |        | Classes: | Tot       | tal Clas      | sses:32      |

### **B. INTRODUCTION**

In view of the growing importance of English as a tool for global communication and the consequent emphasis on training students to acquire language skills, the syllabus of "English for Skill Enhancement" has been designed to develop linguistic, communicative and critical thinking competencies of Engineering students. In English classes, the focus should be on the skills development in the areas of vocabulary, grammar, reading and writing.

# Course Objectives: This course will help to enable the students to:

- 1. Improve the language proficiency of students in English with an emphasis on Vocabulary, Grammar, Reading and Writing skills.
- 2. Develop study skills and communication skills in various professional situations.
- 3. Equip students to study engineering subjects more effectively and critically using the theoretical and practical components of the syllabus.
- 4. Understand the importance of defining, classifying and Practice the unique qualities of Professional writing style.
- 5. Employ the acquired knowledge in Classroom with reference to various social and Professional spheres, thus leading to a lifelong learning process.

## **Course Outcomes:**

- 1. Develop proficiency in reading and writing comprehensive skills from the known and unknown passages.
- 2. Use and interpret vocabulary and sentence structures in new situations.
- 3. Develop skills needed to participate in conversation that builds Proficiency in English.
- 4. Demonstrate, question and test their understanding of functional grammar.
- 5. To differentiate, organise, relate to develop English skills such as drafting paragraphs, letters, essays, abstracts, précis and reports in various contexts.

### UNIT- I

Chapter entitled 'Toasted English' by R.K.Narayan from "English: Language, Context and Culture" published by Orient Black Swan, Hyderabad.

**Vocabulary:** The Concept of Word Formation -The Use of Prefixes and Suffixes - Synonyms and Antonyms

**Grammar:** Identifying Common Errors in Writing with Reference to Articles and Prepositions.

**Reading:** Reading and Its Importance- Techniques for Effective Reading.

**Writing:** Sentence Structures -Use of Phrases and Clauses in Sentences- Importance of Proper Punctuation- Techniques for Writing precisely – Paragraph Writing – Types, Structures and Features of a Paragraph - Creating Coherence-Organizing Principles of Paragraphs in Documents.

### UNIT - II

Chapter entitled 'Appro JRD' by Sudha Murthy from "English: Language, Context and Culture" published by Orient Black Swan, Hyderabad.

**Vocabulary:** Homophones, Homonyms and Homographs

**Grammar:** Identifying Common Errors in Writing with Reference to Noun-pronoun Agreement and Subject-verb Agreement.

**Reading:** Sub-Skills of Reading – Skimming and Scanning – Exercises for Practice

**Writing:** Nature and Style of Writing- Defining /Describing People, Objects, Places and Events.

### UNIT - III

Chapter entitled 'Lessons from Online Learning' by F.Haider Alvi, Deborah Hurst et al from "English: Language, Context and Culture" published by Orient Black Swan, Hyderabad. Vocabulary: Words Often Confused - Words Often Misspelt - Words from Foreign Languages and their Use in English.

**Grammar:** Identifying Common Errors in Writing with Reference to Misplaced Modifiers and Tenses.

**Reading:** Sub-Skills of Reading – Intensive Reading and Extensive Reading – Exercises for Practice.

**Writing:** Format of a Formal Letter-Writing Formal Letters E.g.., Letter of Complaint, Letter of Requisition, Email Etiquette, Job Application with Resume and CV.

## **UNIT - IV**

Chapter entitled "Art and Literature' by Abdul Kalam

Vocabulary: Standard Abbreviations in English-

Grammar: Redundancies and Clichés in Oral and Written Communication.

**Reading:** Survey, Question, Read, Recite and Review (SQ3R Method) - Exercises for Practice

**Writing:** Writing Practices- Essay Writing-Writing Introduction and Conclusion –Précis Writing.

### UNIT - V

Chapter entitled 'Go, Kiss the World' by Subroto Bagchi from "English: Language, Context and Culture" published by Orient Black Swan, Hyderabad.

Vocabulary: Technical Vocabulary and their Usage

**Grammar:** Common Errors in English (Covering all the other aspects of grammar which were not covered in the previous units)

**Reading:** Reading Comprehension-Exercises for Practice

**Writing:** Technical Reports- Introduction – Characteristics of a Report – Categories of Reports Formats- Structure of Reports (Manuscript Format) -Types of Reports - Writing a Report.

# **TEXT BOOK:**

"English: Language, Context and Culture" by Orient Black Swan Pvt. Ltd,

Hyderabad. 2022. Print.7

- 1. Effective Academic Writing by Liss and Davis (OUP)
- 2. Richards, Jack C. (2022) Interchange Series. Introduction, 1,2,3. Cambridge UniversityPress
- 3. Wood, F.T. (2007). Remedial English Grammar. Macmillan
- 4. Chaudhuri, Santanu Sinha. (2018). Learn English: A Fun Book of
- 5. Functional Language, Grammar and Vocabulary. (2 nd ed.,). Sage Publications India Pvt. Ltd.
- 6. (2019). Technical Communication. Wiley India Pvt. Ltd.
- 7. Vishwamohan, Aysha. (2013). English for Technical Communication for.
- 8. Engineering Students. Mc Graw-Hill Education India Pvt. Ltd.

# **Engineering Mechanics**

### B.Tech. I Year I Sem

| Course Code         | Category              |    | lour:<br>Wee | •             | Credits  | Max | kimum  | Marks   |
|---------------------|-----------------------|----|--------------|---------------|----------|-----|--------|---------|
| 22ME104             | Engineering           | L  | T            | P             | _        | CIA | SEE    | TOTAL   |
| 23ME104             | Sciences              | 3  | 0            | 0             | 3        | 40  | 60     | 100     |
| Contact Classes: 48 | Tutorial Classes: Nil | Pı | racti        | ical (<br>Nil | Classes: | Tot | al Cla | sses:48 |

**Course Objectives:** The objectives of this course is to

- 1. Explain the resolution of a system of forces, compute their resultant and solve problems using equations of equilibrium.
- 2. Perform analysis of bodies lying on rough surfaces.
- 3. Locate the centroid of a body and compute the area moment of inertia and mass moment of inertia of standard and composite sections.
- 4. Explain kinetics and kinematics of particles, projectiles, curvilinear motion, centroidal motion and plane motion of rigid bodies
- 5. Explain the concepts of work-energy method.

# **Course Outcomes:** Upon graduation he student will be able to

- 1. Determine resultant of forces acting on a body and analyze equilibrium of a body subjected to a system of forces.
- 2. Analyze the body subjected to friction and establish the centroid of a given section.
- 3. Evaluate the area and mass moment of inertia.
- 4. Comprehend the kinetics and kinematics of a body undergoing rectilinear, curvilinear, rotatory motion and rigid body motion.
- 5. Apply work energy equations for translation, fixed axis rotation and plane motion.

### UNIT - I

**Introduction to Engineering Mechanics** - Force Systems: Basic concepts, Particle equilibrium in 2-D & 3-D; Rigid Body equilibrium; System of Forces, Coplanar Concurrent Forces, Components in Space – Resultant- Moment of Forces and its Application; Couples and Resultant of Force System, Equilibrium of System of Forces, Free body diagrams, Equations of Equilibrium of Coplanar Systems and Spatial Systems; Static Indeterminacy.

## UNIT - II

**Friction:** Types of friction, Limiting friction, Laws of Friction, Static and Dynamic Friction; Motion of Bodies, ladder friction.

Centroid and Centre of Gravity -Centroid of Lines, Areas and Volumes from first principle, centroid of composite sections; Centre of Gravity and its implications. – Theorem of Pappus.

# UNIT - III

**Area moment of inertia**- Definition, Moment of inertia of plane sections from first principles, Theorems of moment of inertia, Moment of inertia of standard sections and composite sections; Product of Inertia, Parallel Axis Theorem, Perpendicular Axis Theorem.

Mass Moment of Inertia: Moment of Inertia of Masses - Transfer Formula for Mass Moments of Inertia - Mass moment of inertia of composite bodies.

# UNIT - IV

Kinematics of Particles: Kinematics of particles – Rectilinear motion – Curvilinear motion – Projectiles.

Kinetics of Particles: Kinetics of particles – Newton's Second Law – Differential equations of rectilinear and curvilinear motion – Dynamic equilibrium – Inertia force – D. Alembert's Principle applied for rectilinear and curvilinear motion.

# UNIT - V

Work - Energy Principle: Equation of translation, principle of conservation of energy, work - energy principle applied to particle motion and connected systems, fixed axis rotation. Impulse - Momentum.

Principle: Introduction, linear impulse momentum, principle of conservation of linear momentum, elastic impact and types of impact, loss of kinetic energy, co efficient of restitution.

### **TEXT BOOKS:**

- 1. Shames and Rao (2006), Engineering Mechanics, Pearson Education
- 2. Reddy Vijay Kumar K. and J. Suresh Kumar (2010), Singer's Engineering Mechanics Statics & Dynamics

- 1. Timoshenko S.P and Young D.H., "Engineering Mechanics", McGraw Hill International Edition, 1983.
- 2. Andrew Pytel, Jaan Kiusalaas, "Engineering Mechanics", Cengage Learning, 2014.
- 3. Beer F.P& Johnston E.R Jr. Vector, "Mechanics for Engineers", TMH, 2004.
- 4. Hibbeler R. C & Ashok Gupta, "Engineering Mechanics", Pearson Education, 2010.
- 5. Tayal A.K., "Engineering Mechanics Statics & Dynamics", Umesh Publications, 2011.
- 6. Basudeb Bhattacharyya, "Engineering Mechanics", Oxford University Press, 2008.
- 7. Meriam. J. L., "Engineering Mechanics", Volume-II Dynamics, John

### PROGRAMMING FOR PROBLEM SOLVING

#### B Tech I Year I Sem

| Course Code | Category                     |     | Hours/<br>Week |     | Credits  | Maximum Marks    |     |  |
|-------------|------------------------------|-----|----------------|-----|----------|------------------|-----|--|
| 23CS105     | CS105 Basic Sciences L T P 3 | 2   | CIA            | SEE | TOTAL    |                  |     |  |
| 2305105     | Basic Sciences               | 3   | 3 0 0          | 3   | 40       | 60               | 100 |  |
| Contact     | Tutorial                     | Pı  | racti          |     | Classes: | Total Classes:48 |     |  |
| Classes: 48 | Classes: Nil                 | Ni1 |                |     |          | Total Glasses.   |     |  |

# **Course Objectives:**

- 1. To learn the fundamentals of computers.
- 2. To understand the various steps in program development.
- 3. To learn the syntax and semantics of the C programming language.
- 4. To learn the usage of structured programming approaches in solving problems.

### **Course Outcomes:** The student will learn

- 1. To write algorithms, draw flowcharts for solving problems and to covert to problems to Cprograms
- 2. To use arrays, pointers, strings and structures to write C programs.
- 3. To decompose a problem into functions and to develop modular reuseable code.
- 4. To implement searching and sorting problems.
- 5. To learn about preprocessor directive and files concepts.

**UNIT - I: Introduction to Programming** Compilers, compiling and executing a program. Representation of Algorithm - Algorithms for finding roots of a quadratic equations, finding minimum and maximum numbers of a given set, finding if a number is prime number Flowchart/Pseudo code with examples, Program design and structured programming

**Introduction to C Programming Language:** variables (with data types and space requirements), Syntax and Logical Errors in compilation, object and executable code, Operators, expressions and precedence, Expression evaluation, Storage classes (auto, extern, static and register), type conversion, The main method and command line arguments Bitwise operations: Bitwise AND, OR, XOR and NOT operators

**Conditional Branching and Loops**: Writing and evaluation of conditionals and consequent branching with if, if-else, switch-case, ternary operator, goto, Iteration with for, while, do- while loops I/O: Simple input and output with scanf and printf, formatted I/O, Introduction to stdin, stdout and stderr. Command line arguments

# UNIT - II: Arrays, Strings, Structures and Pointers:

**Arrays:** one and two dimensional arrays, creating, accessing and manipulating elements of arrays Strings: Introduction to strings, handling strings as array of characters, basic string functions available in C (strlen, strcat, strcpy, strstr etc.), arrays of strings

**Structures**: Defining structures, initializing structures, unions, Array of structures

**Pointers:** Idea of pointers, Defining pointers, Pointers to Arrays and Structures, Use of Pointers in self- referential structures, usage of self referential structures in linked list (no implementation) Enumeration data type

# UNIT - III: Function and Dynamic Memory Allocation:

**Functions**: Designing structured programs, Declaring a function, Signature of a function, Parameters and return type of a function, passing parameters to functions, call by value, Passing arrays to functions, passing pointers to functions, idea of call by reference, Some C standard functions and libraries Recursion: Simple programs, such as Finding Factorial, Fibonacci series etc., Limitations of Recursive functions Dynamic memory allocation: Allocating and freeing memory, Allocating memory for arrays of different data types

# **UNIT - IV: Searching and Sorting:**

Basic searching in an array of elements (linear and binary search techniques), Basic algorithms to sort array of elements (Bubble, Insertion and Selection sort algorithms), Basic concept of order of complexity through the example programs

# UNIT - V: Preprocessor and File handling in C:

Preprocessor: Commonly used Preprocessor commands like include, define, undef, if, ifdef, ifndef Files: Text and Binary files, Creating and Reading and writing text and binary files, Appending data to existing files, Writing and reading structures using binary files, Random access using fseek, ftell and rewind functions.

# TEXT BOOKS:

- 1. Jeri R. Hanly and Elliot B.Koffman, Problem solving and Program Design in C 7th Edition, Pearson
- 2. B.A. Forouzan and R.F. Gilberg C Programming and Data Structures, Cengage Learning, (3rd Edition)

- 1. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice Hall of India
- 2. E. Balagurusamy, Computer fundamentals and C, 2nd Edition, McGraw-Hill
- 3. Yashavant Kanetkar, Let Us C, 18th Edition, BPB
- 4. R.G. Dromey, How to solve it by Computer, Pearson (16th Impression)
- 5. Programming in C, Stephen G. Kochan, Fourth Edition, Pearson Education.
- 6. Herbert Schildt, C: The Complete Reference, Mc Graw Hill, 4th Edition
- 7. Byron Gottfried, Schaum's Outline of Programming with C, McGraw-Hill

### **ENGLISH LANGUAGE AND COMMUNICATION SKILLS LAB**

### B Tech I Year I Sem

| Course Code             | Category                 |                      | Hours/<br>Week |     | Credits  | Max | Maximum Mark |         |  |
|-------------------------|--------------------------|----------------------|----------------|-----|----------|-----|--------------|---------|--|
| 23EN106                 | Basic Sciences           | ciences L T P        | CIA            | SEE | TOTAL    |     |              |         |  |
| 2021100                 | Dasic Sciences           | 0                    | 0              | 2   | -        | 40  | 60           | 100     |  |
| Contact<br>Classes: Nil | Tutorial<br>Classes: Nil | Practical Cla<br>Nil |                |     | Classes: | Tot | al Cla       | sses:32 |  |

The English Language and Communication Skills (ELCS) Lab focuses on the production and practice of sounds of language and familiarizes the students with the use of English in everyday situations both in formal and informal contexts.

# **Course Objectives:**

- 1. To facilitate computer-assisted multi-media instruction enabling individualized and independent language learning
- 2. To sensitize the students to the nuances of English speech sounds, word accent, intonation and rhythm
- 3. To bring about a consistent accent and intelligibility by providing an opportunity for practice in speaking
- 4. To improve the fluency of students in spoken English and neutralize the impact of dialects.
- 5. To train students to use language appropriately for public speaking, group discussions and interviews

# **Course Outcomes:** Students will be able to:

- 1. Understand the nuances of English language through audio- visual experience and group activities
- 2. Use English with proper pronunciation and intonation
- 3. Neutralize their accent for intelligibility
- 4. Develop speaking skills with clarity and confidence which in turn enhances their employability skills
- 5. Communicate confidently in Various situations and apply them in Professional communication

# English Language and Communication Skills Lab (ELCS) shall have two parts:

- 1. Computer Assisted Language Learning (CALL) Lab
- 2. Interactive Communication Skills (ICS) Lab

# Listening Skills

# Objectives

- 1. To enable students develop their listening skills so that they may appreciate its role in the LSRW skills approach to language and improve their pronunciation
- 2. To equip students with necessary training in listening so that they can comprehend the speech of people of different backgrounds and regions

Students should be given practice in listening to the sounds of the language, to be able to recognize them and find the distinction between different sounds, to be able to mark stress and recognize and use the right intonation in sentences.

- a. Listening for general content
- b. Listening to fill up information
- c. Intensive listening
- d. Listening for specific information

# Speaking Skills

# Objectives

- 1. To involve students in speaking activities in various contexts
- 2. To enable students express themselves fluently and appropriately in social and professional contexts
  - Oral practice
  - Describing objects/situations/people
  - Role play Individual/Group activities
  - Just A Minute (JAM) Sessions

The following course content is prescribed for the **English Language and Communication Skills Lab** 

# Exercise - I

## CALL Lab:

*Understand:* Listening Skill- Its importance – Purpose- Process- Types- Barriers-Effective Listening.

Practice: Introduction to Phonetics – Speech Sounds – Vowels and Consonants – Minimal Pairs Consonant Clusters- Past Tense Marker and Plural Marker- Testing Exercises

#### ICS Lab:

Understand: Spoken vs. Written language- Formal and Informal English.

*Practice:* Ice-Breaking Activity and JAM Session- Situational Dialogues – Greetings – Taking Leave – Introducing Oneself and Others.

#### Exercise - II

#### CALL Lab:

*Understand:* Structure of Syllables – Word Stress– Weak Forms and Strong Forms – Stress pattern in sentences – Intonation.

*Practice:* Basic Rules of Word Accent - Stress Shift - Weak Forms and Strong Forms-Stress pattern in sentences - Intonation - Testing Exercises

### ICS Lab:

*Understand:* Features of Good Conversation – Strategies for Effective Communication.

*Practice:* Situational Dialogues – Role Play- Expressions in Various Situations – Making Requests and Seeking Permissions - Telephone Etiquette.

#### Exercise - III

### **CALL Lab:**

*Understand:* Errors in Pronunciation-Neutralising Mother Tongue Interference (MTI).

*Practice:* Common Indian Variants in Pronunciation – Differences between British and American Pronunciation -Testing Exercises

### ICS Lab:

Understand: Descriptions- Narrations- Giving Directions and Guidelines - Blog Writing

*Practice:* Giving Instructions – Seeking Clarifications – Asking for and Giving Directions – Thanking and Responding – Agreeing and Disagreeing – Seeking and Giving Advice – Making Suggestions.

# Exercise - IV

## CALL Lab:

Understand: Listening for General Details.

*Practice:* Listening Comprehension Tests - Testing Exercises

### ICS Lab:

*Understand:* Public Speaking – Exposure to Structured Talks - Non-verbal Communication Presentation Skills.

*Practice:* Making a Short Speech – Extempore- Making a Presentation.

#### Exercise - V

#### CALL Lab:

Understand: Listening for Specific Details.

Practice: Listening Comprehension Tests -Testing Exercises.

# ICS Lab:

*Understand:* Group Discussion

*Practice:* Group Discussion

\*\*\*\*\*

# Source of Material (Master Copy):

• Exercises in Spoken English. Part 1,2,3. CIEFL and Oxford University Press

# **Suggested Software:**

- Cambridge Advanced Learners' English Dictionary with CD.
- Grammar Made Easy by Darling Kindersley.
- Punctuation Made Easy by Darling Kindersley.
- Oxford Advanced Learner's Compass, 10th Edition.
- English in Mind (Series 1-4), Herbert Puchta and Jeff Stranks with Meredith Levy, Cambridge.
- English Pronunciation in Use (Elementary, Intermediate, Advanced) Cambridge University Press.
- English Vocabulary in Use (Elementary, Intermediate, Advanced) Cambridge University Press.
- TOEFL & GRE (KAPLAN, AARCO & BARRONS, USA, Cracking GRE by CLIFFS).
- Digital All
- Orell Digital Language Lab (Licensed Version)

- 1. (2022). English Language Communication Skills Lab Manual cum Workbook. Cengage Learning India Pvt. Ltd.
- 2. Shobha, KN & Rayen, J. Lourdes. (2019). Communicative English A workbook. Cambridge University Press

- 3. Kumar, Sanjay & Lata, Pushp. (2019). Communication Skills: A Workbook. Oxford University Press
- 4. Board of Editors. (2016). ELCS Lab Manual: A Workbook for CALL and ICS Lab Activities. Orient Black Swan Pvt. Ltd.
- 5. Mishra, Veerendra et al. (2020). English Language Skills: A Practical Approach. Cambridge University Press.

### PROGRAMMING FOR PROBLEM SOLVING LABORATORY

#### B Tech I Year I Sem

| Course Code             | Category                 |                     | Hours/<br>Week |   | Credits    | Max | Maximum Mark |         |  |
|-------------------------|--------------------------|---------------------|----------------|---|------------|-----|--------------|---------|--|
| 23CS107                 | Basic Sciences           | L                   | T              | P | <b>⊣</b> 1 | CIA | SEE          | TOTAL   |  |
|                         |                          | 0 0                 |                | 2 |            | 40  | 60           | 100     |  |
| Contact<br>Classes: Nil | Tutorial<br>Classes: Nil | Practical Cl<br>Nil |                |   | Classes:   | Tot | al Cla       | sses:32 |  |

[Note:The programs may be executed using any available Open Source/

Freely available IDE Some of the Tools available are:

Code Lite:https://codelite.org/

Code: Blocks: <a href="http://www.codeblocks.org/">http://www.codeblocks.org/</a>

DevCpp: http://www.bloodshed.net/devcpp.html

Eclipse: <a href="http://www.eclipse.org">http://www.eclipse.org</a>

*This list is not exhaustive and is NOT in any order of preference*]

# **Course Objectives:** The students will learn the following:

- 1. To work with an IDE to create, edit, compile, run and debug programs
- 2. To analyze the various steps in program development.
- 3. To develop programs to solve basic problems by understanding basic concepts in C like operators, control statements etc.
- 4. To develop modular, reusable and readable C Programs using the concepts like functions, arrays etc.
- 5. To Write programs using the Dynamic Memory Allocation concept.
- 6. To create, read from and write to text and binary files

# **Course Outcomes:** The candidate is expected to be able to:

- 1. formulate the algorithms for simple problems
- 2. translate given algorithms to a working and correct program
- 3. correct syntax errors as reported by the compilers
- 4. identify and correct logical errors encountered during execution
- 5. represent and manipulate data with arrays, strings and structures
- 6. use pointers of different types
- 7. create, read and write to and from simple text and binary files
- 8. modularize the code with functions so that they can be reused

# **Practice sessions:**

a. Write a simple program that prints the results of all the operators available in C (including pre/ post increment, bitwise and/or/not, etc.). Read required operand values from standard input.

b. Write a simple program that converts one given data type to another using auto conversion and casting. Take the values from standard input.

# Simple numeric problems:

- a. Write a program for finding the max and min from the three numbers.
- b. Write the program for the simple, compound interest.
- c. Write a program that declares Class awarded for a given percentage of marks, where mark

```
<40% = Failed, 40% to <60% = Second class, 60% to <70% = First class, >= 70% = Distinction. Read percentage from standard input.
```

- d. Write a program that prints a multiplication table for a given number and the number of rows in the table. For example, for a number 5 and rows = 3, the output should be:
- e. e.  $5 \times 1 = 5$
- f. f.  $5 \times 2 = 10$
- g. g.  $5 \times 3 = 15$
- h. h. Write a program that shows the binary equivalent of a given positive number between 0 to 255.

# **Expression Evaluation:**

- a. A building has 10 floors with a floor height of 3 meters each. A ball is dropped from the top of the building. Find the time taken by the ball to reach each floor. (Use the formula  $s = ut+(1/2)at^2$  where u and a are the initial velocity in  $m/\sec(=0)$  and acceleration in  $m/\sec^2(=9.8 \text{ m/s}^2)$ ).
- b. Write a C program, which takes two integer operands and one operator from the user, performs the operation and then prints the result. (Consider the operators +,-,\*, /, % and use Switch Statement)
- c. Write a program that finds if a given number is a prime number
- d. Write a C program to find the sum of individual digits of a positive integer and test given number is palindrome.
- e. A Fibonacci sequence is defined as follows: the first and second terms in the sequence are 0 and 1. Subsequent terms are found by adding the preceding two terms in the sequence. Write a C program to generate the first n terms of the sequence.
- f. Write a C program to generate all the prime numbers between 1 and n, where n is a value supplied by the user.
- g. Write a C program to find the roots of a Quadratic equation.
- h. Write a C program to calculate the following, where x is a fractional value. i.  $1-x/2+x^2/4-x^3/6$
- j. Write a C program to read in two numbers, x and n, and then compute the sum of this geometric progression:  $1+x+x^2+x^3++x^n$ . For example: if n is 3 and x is 5, then the program computes 1+5+25+125.

# Arrays, Pointers and Functions:

- a. Write a C program to find the minimum, maximum and average in an array of integers.
- b. Write a function to compute mean, variance, Standard Deviation, sorting of n elements in a single dimension array.
- c. Write a C program that uses functions to perform the following:
- d. Addition of Two Matrices
- e. Multiplication of Two Matrices
- f. Transpose of a matrix with memory dynamically allocated for the new matrix as row and column counts may not be the same.
- g. Write C programs that use both recursive and non-recursive functions
- h. To find the factorial of a given integer.
- i. To find the GCD (greatest common divisor) of two given integers.
- i. To find  $x^n$
- k. Write a program for reading elements using a pointer into an array and display the values using the array.
- 1. Write a program for display values reverse order from an array using a pointer.
- m. Write a program through a pointer variable to sum of n elements from an array.

#### Files:

- a. Write a C program to display the contents of a file to standard output device.
- b. Write a C program which copies one file to another, replacing all lowercase characters with their uppercase equivalents.
- c. Write a C program to count the number of times a character occurs in a text file. The file name and the character are supplied as command line arguments.
- d. Write a C program that does the following:

It should first create a binary file and store 10 integers, where the file name and 10 values are given in the command line. (hint: convert the strings using atoi function)

Now the program asks for an index and a value from the user and the value at that index should be changed to the new value in the file. (hint: use fseek function)

The program should then read all 10 values and print them back.

e. Write a C program to merge two files into a third file (i.e., the contents of the first file followed by those of the second are put in the third file).

# Strings:

- a. Write a C program to convert a Roman numeral ranging from I to L to its decimal equivalent.
- b. Write a C program that converts a number ranging from 1 to 50 to Roman equivalent
- c. Write a C program that uses functions to perform the following operations:
- d. To insert a sub-string into a given main string from a given position.
- e. To delete n Characters from a given position in a given string.
- f. Write a C program to determine if the given string is a palindrome or not (Spelled same in both directions with or without a meaning like madam, civic, noon, abcba, etc.)
- g. Write a C program that displays the position of a character ch in the string S or -1 if S doesn't contain ch.
- h. Write a C program to count the lines, words and characters in a given text.

#### Miscellaneous:

- a. Write a menu driven C program that allows a user to enter n numbers and then choose between finding the smallest, largest, sum, or average. The menu and all the choices are to be functions. Use a switch statement to determine what action to take. Display an error message if an invalid choice is entered.
- b. Write a C program to construct a pyramid of numbers as follows:

| 1     | *     | 1     | 1       | *      |
|-------|-------|-------|---------|--------|
| 1 2   | * *   | 2 3   | 2 2     | * *    |
| 1 2 3 | * * * | 4 5 6 | 3 3 3   | * * *  |
|       |       |       | 4 4 4 4 | * * ** |

# Sorting and Searching:

- a. Write a C program that uses non recursive function to search for a Key value in a given
- b. list of integers using linear search method.
- c. Write a C program that uses non recursive function to search for a Key value in a given
- d. sorted list of integers using binary search method.
- e. Write a C program that implements the Bubble sort method to sort a given list of
- f. integers in ascending order.
- g. Write a C program that sorts the given array of integers using selection sort in descending order
- h. Write a C program that sorts the given array of integers using insertion sort in ascending order
- i. Write a C program that sorts a given array of names

### **TEXT BOOKS:**

- 1. Jeri R. Hanly and Elliot B.Koffman, Problem solving and Program Design in C 7th Edition, Pearson
- 2. B.A. Forouzan and R.F. Gilberg C Programming and Data Structures, Cengage Learning, (3rd Edition)

- 1. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, PHI
- 2. E. Balagurusamy, Computer fundamentals and C, 2nd Edition, McGraw-Hill
- 3. Yashavant Kanetkar, Let Us C, 18th Edition, BPB
- 4. R.G. Dromey, How to solve it by Computer, Pearson (16th Impression)
- 5. Programming in C, Stephen G. Kochan, Fourth Edition, Pearson Education.
- 6. Herbert Schildt, C: The Complete Reference, Mc Graw Hill, 4th Edition
- 7. Byron Gottfried, Schaum's Outline of Programming with C, McGraw-Hill

#### **ENGINEERING CHEMISTRY LABORATORY**

### B Tech I Year I Sem

| Course Code             | Category                 |                    | Hours/<br>Week |     | Credits  | Max       | Maximum Mark |              |
|-------------------------|--------------------------|--------------------|----------------|-----|----------|-----------|--------------|--------------|
| 23CH108                 | Basic Sciences           | L<br>O             | <b>T</b>       | P 2 | 1        | CIA<br>40 | SEE<br>60    | TOTAL<br>100 |
| Contact<br>Classes: Nil | Tutorial<br>Classes: Nil | Practical C<br>Nil |                |     | Classes: | Tot       | al Clas      | sses:32      |

**Course Objectives:** The course consists of experiments related to the principles of chemistry required for engineering student. The student will learn:

- 1. Estimation of hardness of water to check its suitability for drinking purpose.
- 2. To perform estimations of acids and bases using conductometry, potentiometry and pH metry methods.
- 3. To prepare polymers such as Bakelite and nylon-6 in the laboratory.
- 4. Skills related to the lubricant properties such as saponification value, surface tension and viscosity of oils
- 5. How to analyze the rate of corrosion of steel.

#### Course outcomes:

The students will be able to:

- 1. Determination of parameters like hardness of water and rate of corrosion of mild steel in various conditions.
- 2. Perform methods such as conductometry, potentiometry and pH metry in order to find out the concentrations or equivalence points of acids and bases.
- 3. Prepare polymers like bakelite and nylon-6.
- 4. Estimate surface tension and viscosity of lubricant oils.
- 5. Determine the rate of corrosion of steel in presence and absence of inhibitor

## LIST OF EXPERIMENTS:

- 1. Volumetric Analysis: Estimation of Hardness of water by EDTA Complexometry method.
- 2. Conductometry: Estimation of the concentration of an acid by Conductometry.
- 3. Potentiometry: Estimation of the amount of Fe+2 by Potentiomentry.
- 4. pH Metry: Determination of an acid concentration using pH meter.
- 5. Preparations:
  - 1. Preparation of Bakelite.
  - 2. Preparation Thiokol Rubber.

- 6. Lubricants:
- 1. Estimation of acid value of given lubricant oil.
- 2. Estimation of Viscosity of lubricant oil using Ostwald's Viscometer.
- 3. Estimation of Surface Tension of lubricant oil using

# Stalagmometer.

- 7. Virtual lab experiments
  - 1. Construction of Fuel cell and it's working.
  - 2. Smart materials for biomedical applications
  - 3. Batteries for electrical vehicles.
  - 4. Functioning of solar cell and its applications.
  - 5. Corrosion: Determination of rate of corrosion of mild steel in the presence and absence of inhibitor.
  - 6. Preparation of nylon-6.

- 1. Lab manual for Engineering chemistry by B. Ramadevi and P. Aparna, S Chand Publications, New Delhi (2022)
- 2. Vogel's text book of practical organic chemistry 5th edition
- 3. Inorganic Quantitative analysis by A.I. Vogel, ELBS Publications.
- 4. College Practical Chemistry by V.K. Ahluwalia, Narosa Publications Ltd. New Delhi (2007)

### ELEMENTS OF MECHANICAL ENGINEERING

### B.Tech. I Year I Sem

| Course Code          | Category                | Hours/<br>Week Credits |        | ('ategoty   '   ('tedits   Wayimiim |     |           | Marks     |              |
|----------------------|-------------------------|------------------------|--------|-------------------------------------|-----|-----------|-----------|--------------|
| 23ME109              | Engineering<br>Sciences | <b>L</b> 0             | T<br>0 | P<br>2                              | 1   | CIA<br>40 | SEE<br>60 | TOTAL<br>100 |
| Contact Classes: Nil | Tutorial Classes: Nil   | Practical Cl<br>32     |        | Classes:                            | Tot | al Clas   | sses:32   |              |

**Course Objectives**: The objectives of this course are to

- 1. Make the student to experimentally measure the common geometric properties like length, diameter, flatness, curvature, volume and moment of inertia etc.
- 2. Give a practical knowledge to evaluate the friction between surfaces and also to evaluate the natural frequency of the system.
- 3. Correlate between theory and experimental results, directly observe the proof of principles and theories through practical knowledge
- 4. Introduce students to the basic concepts of manufacturing through the demonstration of various processes.
- 5. Understand the commonly used mechanical components like gear box, working of boilers and IC engine etc.

# **Course outcomes:** The students will be able to:

- 1. Understand the operation, usage and applications of different measuring instruments and tools.
- 2. Examine the different characteristics of instruments like accuracy, precision etc
- 3. Prepare simple composite components and joining different materials using soldering process.
- 4. Identify tools & learn practically the process of turning, milling, grinding on mild steel pieces.
- 5. Understand the basic components of IC engine, Gear box and boiler.

# List of Experiments to be performed:

- 1. Measurement of length, height, diameter by vernier calipers.
- 2. To measure diameter of a given wire and sphere, thickness of a given sheet and volume of an irregular lamina using micrometer screw gauge.
- 3. Use of straight edge and sprit level in finding the flatness of surface plate.
- 4. Determination of time period and natural frequency of simple pendulum.
- 5. Determination of time period and natural frequency of compound pendulum.

- 6. To measure the coefficients of static and kinetic friction between a block and a plane using various combination of materials.
- 7. To determine the radius of curvature of a given spherical surface.
- 8. The experimental determination of the Moment of Inertia of regular and irregular solids.
- 9. Metal joining process-soldering of metal alloys to any PCB board
- 10.A simple composite geometry preparation by hand layup method.
- 11. Grouping of Dry cells for a specified voltage and current and its measurement using ammeters and voltmeters etc.
- 12. Demonstration of lathe, milling, drilling, grinding machine operations.
- 13. Study of transmission system –gear box
- 14. Assembly / disassembly of Engines
- 15. Study of Boilers

Note: Perform any 10 out of the 15 Exercises.

# ORDINARY DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS

### B Tech I Year II Sem

| Course Code            | Category                |                    | Hours/<br>Week |        | Credits  | Max       | Maximum Ma |              |
|------------------------|-------------------------|--------------------|----------------|--------|----------|-----------|------------|--------------|
| 23MA201                | Basic Sciences          | 1<br>3             | 1              | P<br>0 | 4        | CIA<br>40 | SEE<br>60  | TOTAL<br>100 |
| Contact<br>Classes: 48 | Tutorial<br>Classes: 16 | Practical C<br>Nil |                |        | Classes: | Tot       | al Cla     | sses:64      |

Pre-requisites: Mathematical Knowledge at pre-university level

# Course Objectives: To learn

- 1. Various analytical Methods to solve first order first degree ordinary differential equations.
- 2. Methods to solve higher order ordinary differential equations.
- 3. Concept, properties of Laplace transforms and solving ordinary differential equations using Laplace transforms techniques.
- 4. The physical quantities involved in engineering field related to vector valued functions
- 5. Line, Surface and Volume integrals and their applications

# Course outcomes: the student will be able to

- 1. Find the solutions of first order first degree differential equations and their applications.
- 2. Solve higher differential equation and apply the concept of differential equation to real world problems.
- 3. Use the Laplace transforms techniques for solving ordinary differential equations.
- 4. Calculate gradient of scalar point function and divergence, curl of vector point function.
- 5. Evaluate the line, surface and volume integrals and converting them from one to another.

**UNIT-I: First Order ODE:** Exact differential equations, Equations reducible to exact differential equations, linear and Bernoulli's equations, Orthogonal Trajectories (Cartesian & Polar Coordinates). Applications: Newton's law of cooling, Law of natural growth and decay, First order but not of first degree: solvable for 'p' and clairauts equations.

# UNIT-II: Ordinary Differential Equations of Higher Order

Second order linear differential equations with constant coefficients: Non-Homogeneous terms of the type  $e^{ax}$ ,  $\sin$ ,  $\cos ax$ , polynomials in x,  $e^{ax}V(x)$  and  $x^m$  V(x),, (method of variation of parameters, Equations reducible to linear ODE with constant coefficients: Cauchy-Euler equation.

# **UNIT-III: Laplace transforms**

Laplace Transforms: Laplace Transform of standard functions, First shifting theorem, Second shifting theorem, Unit step function, Dirac delta function, Laplace transforms of functions when they are multiplied and divided by 't', Laplace transforms of derivatives and integrals of function, Evaluation of integrals by Laplace transforms, Laplace transform of periodic functions, Inverse Laplace transform by different methods, convolution theorem (without proof). Applications: solving Initial value problems by Laplace Transform method.

# **UNIT-IV: Vector Differentiation**

Vector point functions and scalar point functions, Gradient, Divergence and Curl, Directional derivatives, Tangent plane and normal line, Vector Identities, Scalar potential functions, Solenoidal and Irrotational vectors.

**UNIT-V: Vector Integration** Line, Surface and Volume Integrals, Theorems of Green, Gauss and Stokes (without proofs) and their applications.

# **TEXT BOOKS:**

- 1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010
- 2. R.K. Jain and S.R.K. Iyengar, Advanced Engineering Mathematics, Narosa Publications, 5 th Edition, 2016.

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
- 2. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.
- 3. H. K. Dass and Er. Rajnish Verma, Higher Engineering Mathematics, S Chand and Company Limited, New Delhi.
- 4. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.

### APPLIED PHYSICS

### B Tech I Year II Sem

| Course Code            | Category                |                      | Hours/<br>Week |   | ' ('####              |     | Credits | ts Maximum Mar |        |         |
|------------------------|-------------------------|----------------------|----------------|---|-----------------------|-----|---------|----------------|--------|---------|
| 02011000               | Basic Sciences          | L                    | T              | P | 4                     | CIA | SEE     | TOTAL          |        |         |
| 23PH202                | Basic Sciences          | 3 1 0 4              |                |   |                       | 40  | 60      | 100            |        |         |
| Contact<br>Classes: 48 | Tutorial<br>Classes: 16 | Practical Cla<br>Nil |                |   | Practical Classes: To |     |         | Tot            | al Cla | sses:64 |

# **Course Objectives:**

The objectives of this course for the student are to:

- 1. Understand the basic principles of quantum physics and band theory of solids.
- 2. Understand the underlying mechanism involved in construction and working principles of various semiconductor devices.
- 3. Study the fundamental concepts related to the dielectric, magnetic and energy materials.
- 4. Identify the importance of nanoscale, quantum confinement and various fabrications techniques.
- 5. Study the characteristics of lasers and optical fibers

# Course Outcomes: Upon graduation he student will be able to:

- 1. Analyze the concepts of Quantum mechanics and visualize the difference between conductor, semiconductor, and an insulator by classification of solids.
- 2. Identify the role of semiconductor devices in science and engineering Applications.
- 3. Explore the fundamental properties of dielectric and magnetic materials.
- 4. Appreciate the features and applications of Nanomaterials.
- 5. Analyze various aspects of Lasers and Optical fiber and their applications in diverse fields.

# UNIT - I: QUANTUM PHYSICS AND SOLIDS

**Quantum Physics**: Introduction to quantum physics, Blackbody radiation – Stefan-Boltzmann's law, Planck's radiation law - Wein's and Rayleigh-Jean's law, Photoelectric effect, Matter Waves, de - Broglie Hypothesis, Davisson and Germer experiment, Heisenberg uncertainty principle, Time independent Schrodinger wave equation, Born interpretation of the wave function, Particle in one dimensional potential box.

**Solids:** Classical & Quantum free electron theory (Qualitative), Bloch's theorem, Kronig-Penney model, E-K diagram, Effective mass of electron, Origin of energy bands - classification of solids.

### **UNIT - II: SEMICONDUCTORS AND DEVICES**

Intrinsic and extrinsic semiconductors(Qualitative) – Hall effect - direct and indirect band gap semiconductors - construction, principle of operation and I-V characteristics of P-N Junction diode, Zener diode, bipolar junction Transistor(BJT) - LED, PIN diode, avalanche photo diode (APD) and solar cells, their structure, materials, working principle and I-V characteristics.

### UNIT - III: DIELECTRIC AND MAGNETIC MATERIALS

**Dielectric Materials:** Basic definitions, Types of polarizations (qualitative) -Langevin-Debye equation, Internal fields in a solid, Clausius - Mossotti equation ferroelectric, piezoelectric, and pyroelectric materials – applications, liquid crystal displays (LCD) and crystal oscillators.

**Magnetic Materials:** Basic definitions, Classification of magnetic materials, Domain theory, Hysteresis - soft and hard magnetic materials, magnetostriction, magneto resistance - applications - magnetic field sensors and multiferroics.

# **UNIT-IV: NANOTECHNOLOGY**

Nanoscale, Quantum Confinement, Surface to volume ratio, Bottom-Up Fabrication: Sol-Gel – Precipitation- Combustion methods, Top-Down Fabrication: Ball Milling - Physical Vapor Deposition (PVD) - Chemical Vapor Deposition (CVD), Characterization Techniques: XRD, SEM & TEM, Applications of Nano materials.

### **UNIT - V: LASER AND FIBER OPTICS**

**Lasers:** Laser beam characteristics, Three quantum processes, Einstein coefficients and their relations, Population Inversion, Lasing action, Pumping methods, Ruby laser, He-Ne Laser, CO2 Laser, Nd-Yag Laser, semiconductor laser-applications of laser.

**Fiber Optics:** Introduction to optical fiber- advantages of optical Fibers - total internal reflection, construction of optical fiber - acceptance angle - numerical aperture-classification of optical fibers -losses in optical fiber - optical fiber for communication system - applications.

# **TEXT BOOKS:**

- 1. M. N. Avadhanulu, P.G. Kshirsagar & TVS Arun Murthy" A Text book of Engineering Physics"- S. Chand Publications, 11th Edition 2019.
- 2. Engineering Physics by Shatendra Sharma and Jyotsna Sharma, Pearson Publication, 2019
- 3. Semiconductor Physics and Devices- Basic Principle Donald A, Neamen, Mc Graw Hill, 4 thEdition, 2021.

- 4. B.K. Pandey and S. Chaturvedi, Engineering Physics, Cengage Learning, 2ndEdition, 2022.
- 5. Essentials of Nanoscience & Nanotechnology by Narasimha Reddy Katta, Typical Creatives NANO DIGEST, 1st Edition, 2021.
- 6. Modern Engineering Physics by Dr. K. Vijay Kumar, Dr. Chandralingam, S.Chand Publications,

- 1. Quantum Physics, H.C. Verma, TBS Publication, 2nd Edition 2012.
- 2. Fundamentals of Physics Halliday, Resnick and Walker, John Wiley &Sons,11th Edition, 2018.
- 3. Introduction to Solid State Physics, Charles Kittel, Wiley Eastern, 2019.
- 4. Elementary Solid State Physics, S.L. Gupta and V. Kumar, Pragathi Prakashan, 2019. 5. A.K. Bhandhopadhya Nano Materials, New Age International, 1stEdition, 2007.

### COMPUTER AIDED ENGINEERING GRAPHICS

#### B Tech I Year II Sem

| Course Code            | Category                |    | Hours/<br>Week |       | Credits  | Max | Maximum Mar |         |  |
|------------------------|-------------------------|----|----------------|-------|----------|-----|-------------|---------|--|
| 23ME203                | 03 Basic Sciences       | L  | T              | P     | 4        | CIA | SEE         | TOTAL   |  |
| 23WE2U3                | Basic Sciences          | 3  | 1              | 0     | 4        | 40  | 60          | 100     |  |
| Contact<br>Classes: 48 | Tutorial<br>Classes: 16 | Pı | racti          | cal ( | Classes: | Tot | al Clas     | sses:64 |  |

# **Course Objectives:**

- 1. To develop the ability of visualization of different objects through technical drawings
- 2. To acquire computer drafting skill for communication of concepts, ideas in the design of engineering products

**Course Outcomes:** At the end of the course, the student will be able to:

- 1. Apply computer aided drafting tools to create 2D and 3D objects
- 2. Sketch conics and different types of solids
- 3. Appreciate the need of Sectional views of solids and Development of surfaces of solids Read and interpret engineering drawings
- 4. Conversion of orthographic projection into isometric view and vice versa manually and by using computer aided drafting

### UNIT - I:

**Introduction to Engineering Graphics:** Principles of Engineering Graphics and their Significance, Scales – Plain & Diagonal, Conic Sections including the Rectangular Hyperbola – General method only. Cycloid, Epicycloid and Hypocycloid, Introduction to Computer aided drafting – views, commands and conics

#### UNIT- II:

**Orthographic Projections:** Principles of Orthographic Projections – Conventions – Projections of Points and Lines, Projections of Plane regular geometric figures. Auxiliary Planes. Computer aided orthographic projections – points, lines and planes

# UNIT - III:

Projections of Regular Solids – Auxiliary Views - Sections or Sectional views of Right Regular Solids – Prism, Cylinder, Pyramid, Cone – Auxiliary views, Computer aided projections of solids – sectional views

## UNIT - IV:

Development of Surfaces of Right Regular Solids – Prism, Cylinder, Pyramid and Cone, Development of surfaces using computer aided drafting

# UNIT - V:

**Isometric Projections:** Principles of Isometric Projection – Isometric Scale – Isometric Views – Conventions – Isometric Views of Lines, Plane Figures, Simple and Compound Solids – Isometric Projection of objects having non- isometric lines. Isometric Projection of Spherical Parts. Conversion of Isometric Views to Orthographic Views and Vice-versa –Conventions. Conversion of orthographic projection into isometric view using computer aided drafting.

# **TEXT BOOKS:**

- 1. Engineering Drawing N.D. Bhatt / Charotar
- 2. Engineering Drawing and graphics Using AutoCAD Third Edition, T. Jeyapoovan, Vikas: S. Chand and company Ltd.

## **REFERENCE BOOKS:**

- 1. Engineering Drawing, Basant Agrawal and C M Agrawal, Third Edition McGraw Hill
- 2. Engineering Graphics and Design, WILEY, Edition 2020
- 3. Engineering Drawing, M. B. Shah, B.C. Rane / Pearson.
- 4. Engineering Drawing, N. S. Parthasarathy and Vela Murali, Oxford
- 5. Computer Aided Engineering Drawing K Balaveera Reddy et al CBS Publishers

**Note:** - External examination is conducted in conventional mode and internal evaluation to be done by the conventional as well as using computer aided drafting.

### **ENGINEERING MATERIALS**

### B Tech I Year II Sem

| Course Code         | Category                | Hours/<br>Week       |   | Credits | Maximum Marks |                  |     |       |
|---------------------|-------------------------|----------------------|---|---------|---------------|------------------|-----|-------|
| 23ME204             | Engineering<br>Sciences | L                    | T | P       | 2             | CIA              | SEE | TOTAL |
|                     |                         | 2                    | 0 | 0       |               | 40               | 60  | 100   |
| Contact Classes: 32 | Tutorial Classes: Nil   | Practical Cla<br>Nil |   |         | Classes:      | Total Classes:32 |     |       |

**Course Objectives:** The objectives of this course are to

- 1. Provide basic understanding of engineering materials, their structure, classification and usage.
- 2. Introduce the testing methods for various material properties and ASTM standards used in testing.
- 3. Understand the various materials used in mechanical engineering like metals, ceramics, polymers, composite materials and other new materials.

**COURSE OUTCOMES:** At the end of the course, students will be able to:

- 1. Classify the various materials that will be essential for the mechanical engineering applications.
- 2. Express the mechanical properties of metals and their testing procedures.
- 3. Understand the application of materials and their processing
- 4. Understand the requirement and need for the development of the new materials.
- 5. Understand the application of advance materials in nano technology and their processing.

# UNIT-I:

Classification of Engineering Materials, Ashby chart, Mechanical Properties of Metals and their testing equipment/procedures, ASTM standards for testing, Stress-Strain Behavior of various materials, Sources of Material Data.

# UNIT -II:

Metals and Metal Alloys, Classification of Metal Alloys, Classification, composition, properties and usage of Ferrous alloys, steel, HSS, grey cast iron, white cast iron; Classification, composition, properties and usage of Nonferrous materials, Aluminum, Titanium, Zinc, Copper, Nickel, Cobalt and their alloys

# UNIT -III:

Composites: Definitions, Reinforcements and matrices, Types of reinforcements, Types of matrices, Classification of composites, Properties of composites in comparison with standard materials Manufacturing methods: Hand and spray lay - up, injection molding, resin injection, filament winding, pultrusion, centrifugal casting and prepregs.

# UNIT - IV:

Ceramics, Classification of ceramic materials, Crystal Structure, Applications and Properties of Ceramics, Ceramic fabrication techniques, Carbon: Diamond and Graphite.

Polymer Structures, Chemistry of Polymer Molecules, Classification scheme of polymer molecules, Thermoplastic and Thermosetting Polymers, Characteristics, Applications, and Processing of Polymers, Elastomers.

# UNIT - V:

Materials in nano technology: Semiconductor Nanomaterials (Zinc oxide nano materials, titanium dioxide nanoparticles, Metal nanoparticles, ceramic nano materials metal nano particles (Silver, gold, iron and copper), applications, bio materials and other recent materials

## **TEXT BOOKS:**

- 1. George Murray, Charles V. White, Wolfgang Weise, "Introduction to Engineering Materials", CRC Press, 2007.
- 2. William. D. Callister, David G. Rethwisch, "Materials Science and Engineering: An Introduction", John Wiley & Sons, 2018.

- 1. Myer Kutz, "Mechanical Engineers' Handbook", John Wiley & Sons, 2015.
- 2. M.A. Shah, K.A.Shah, Nano technology, the science of Small, WILEY, Second Edition, 2019.
- 3. E. Paul De Garmo, J.T. Black, R.A. Kohler. Materials and Processes in Manufacturing, John Wiley and Sons, Inc., NY, 11 th Edition, 2012.
- 4. R.J. Crawford, plastics engineering, Pergamon Presss, 2013.
- 5. Donald R Askland and Pradeep P Phule "Essentials of Materials Science and Engineering", by Pradeep P. Fulay (Author), Donald R. Askeland, 2013.
- 6. K. K. Chawala, Cermic Matrix composite Materials, Kluwer Academic Publishers, 2002.

# APPLIED PHYSICS LAB

#### B Tech I Year II Sem

| Course Code             | Category                 | Hours/<br>Week      |        |        | Credits  | Maximum Marks    |           |              |
|-------------------------|--------------------------|---------------------|--------|--------|----------|------------------|-----------|--------------|
| 23PH205                 | Humanities &<br>Sciences | <b>L</b>            | T<br>0 | P<br>3 | 1.5      | CIA<br>40        | SEE<br>60 | TOTAL<br>100 |
| Contact Classes:<br>Nil | Tutorial<br>Classes: Nil | Practical Cla<br>48 |        |        | Classes: | Total Classes:48 |           |              |

# Course Ojectives: The objectives of this course for the student to

- 1. Capable of handling instruments related to the Hall effect and photoelectric effect experiments and their measurements.
- 2. Understand the characteristics of various devices such as PN junction diode, Zener diode, BJT, LED, solar cell, lasers and optical fiber and measurement of energy gap and resistivity of semiconductor materials.
- 3. Able to measure the characteristics of dielectric constant of a given material.
- 4. Study the behavior of B-H curve of ferromagnetic materials.
- 5. Understanding the method of least squares fitting.

#### Course Outcomes: The students will be able to:

- 1. Know the determination of the Planck's constant using Photo electric effect and identify the material whether it is n-type or p-type by Hall experiment.
- 2. Appreciate quantum physics in semiconductor devices and optoelectronics.
- 3. Gain the knowledge of applications of dielectric constant.
- 4. Understand the variation of magnetic field and behavior of hysteresis curve.
- 5. Carried out data analysis.

### LIST OF EXPERIMENTS:

- 1. Determination of work function and Planck's constant using photoelectric effect.
- 2. Determination of Hall co-efficient and carrier concentration of a given semiconductor.
- 3. Characteristics of series and parallel LCR circuits.
- 4. V-I characteristics of a p-n junction diode and Zener diode
- 5. Input and output characteristics of BJT (CE, CB & CC configurations)
- 6. a) V-I and L-I characteristics of light emitting diode (LED)
- b) V-I Characteristics of solar cell
- 7. Determination of Energy gap of a semiconductor.
- 8. Study B-H curve of a magnetic material.
- 9. Determination of dielectric constant of a given material
- 10. a) Determination of the beam divergence of the given LASER beam
- b) Determination of Acceptance Angle and Numerical Aperture of an optical fiber.
- 11. Understanding the method of least squares torsional pendulum as an example.

Note: Any 8 experiments are to be performed.

**REFERENCE BOOK:** S. Balasubramanian, M.N. Srinivasan "A Text book of Practical Physics"- S Chand Publishers, 2017.

### PYTHON PROGRAMMING LABORATORY

#### B Tech I Year II Sem

| Course Code             | Category                 | Hours/<br>Week        |   |   | Credits  | Maximum Marks    |     |       |  |
|-------------------------|--------------------------|-----------------------|---|---|----------|------------------|-----|-------|--|
| 23CS206                 | Humanities & Sciences    | L                     | T | P | 2        | CIA              | SEE | TOTAL |  |
|                         |                          | 1                     | 0 | 2 |          | 40               | 60  | 100   |  |
| Contact Classes:<br>Nil | Tutorial<br>Classes: Nil | Practical Classes: 32 |   |   | Classes: | Total Classes:48 |     |       |  |

# **Course Objectives:**

- To install and run the Python interpreter
- To learn control structures.
- To Understand Lists, Dictionaries in python
- To Handle Strings and Files in Python

Course Outcomes: After completion of the course, the student should be able to

- 1. Develop the application specific codes using python.
- 2. Understand Strings, Lists, Tuples and Dictionaries in Python
- 3. Verify programs using modular approach, file I/O, Python standard library
- 4. Implement digital system using Python
- 5. Implement GUI program to create window wizard

Note: The lab experiments will be like the following experiment examples

## Week -1:

- 1. i) Use a web browser to go to the Python website <a href="http://python.org">http://python.org</a>. This page contains information about Python and links to Python-related pages, and it gives you the ability to search the Python documentation.
  - ii) Start the Python interpreter and type help() to start the online help utility.
- 2. Start a Python interpreter and use

it as a Calculator. 3.

- i. Write a program to calculate compound interest when principal, rate and number of periods are given.
- ii. Given coordinates (x1, y1), (x2, y2) find the distance between two points
- 4. Read name, address, email and phone number of a person through keyboard and print the details.

## Week - 2:

1. Print the below triangle using for loop.

5

4 4

3 3 3

2222

11111

- 2. Write a program to check whether the given input is digit or lowercase character or uppercase character or a special character (use 'if-else-if ladder)
- 3. Python Program to Print the Fibonacci sequence using while loop
- 4. Python program to print all prime numbers in a given interval (use break)

# Week - 3:

- 1. i) Write a program to convert a list and tuple into arrays.
- ii) Write a program to find common values between two arrays.
- 2. Write a function called gcd that takes parameters a and b and returns their greatest common divisor.
- 3. Write a function called palindrome that takes a string argument and returns True if it is a palindrome and False otherwise. Remember that you can use the built-in function len to check the length of a string.

## Week - 4:

- 1. Write a function called is\_sorted that takes a list as a parameter and returns True if the list is sorted in ascending order and False otherwise.
- 2. Write a function called has\_duplicates that takes a list and returns True if there is any element that appears more than once. It should not modify the original list.
  - i. Write a function called remove\_duplicates that takes a list and returns a new list with only the unique elements from the original. Hint: they don't have to be in the same order.
  - ii. The wordlist I provided, words.txt, doesn't contain single letter words. So you might want to add "I", "a", and the empty string.
  - iii. Write a python code to read dictionary values from the user. Construct a function to invert its content. i.e., keys should be values and values should be keys.
- 3. i) Add a comma between the characters. If the given word is 'Apple', it should become 'A,p,p,l,e'
- ii. Remove the given word in all the places in a string?

- iii. Write a function that takes a sentence as an input parameter and replaces the first letter of every word with the corresponding upper case letter and the rest of the letters in the word by corresponding letters in lower case without using a built-in function?
  - 4. Writes a recursive function that generates all binary strings of n-bit length

## Week - 5:

- 1. i) Write a python program that defines a matrix and prints
  - ii. Write a python program to perform addition of two square matrices
  - iii. Write a python program to perform multiplication of two square matrices
- 2. How do you make a module? Give an example of construction of a module using different geometrical shapes and operations on them as its functions.
- 3. Use the structure of exception handling all general purpose exceptions.

#### Week-6:

- 1. a. Write a function called draw\_rectangle that takes a Canvas and a Rectangle as arguments and draws a representation of the Rectangle on the Canvas.
- b. Add an attribute named color to your Rectangle objects and modify draw\_rectangle so that it uses the color attribute as the fill color.
- c. Write a function called draw\_point that takes a Canvas and a Point as arguments and draws a representation of the Point on the Canvas.
- d. Define a new class called Circle with appropriate attributes and instantiate a few Circle objects. Write a function called draw\_circle that draws circles on the canvas.
- 2. Write a Python program to demonstrate the usage of Method Resolution Order (MRO) in multiple levels of Inheritances.
- 3. Write a python code to read a phone number and email-id from the user and validate it for correctness.

# Week- 7

- 1. Write a Python code to merge two given file contents into a third file.
- 2. Write a Python code to open a given file and construct a function to check for given words present in it and display on found.
- 3. Write a Python code to Read text from a text file, find the word with most number of occurrences
- 4. Write a function that reads a file *file1* and displays the number of words, number of vowels, blank spaces, lower case letters and uppercase letters.

## Week - 8:

- 1. Import numpy, Plotpy and Scipy and explore their functionalities.
- 2. a) Install NumPy package with pip and explore it.
- 3. Write a program to implement Digital Logic Gates AND, OR, NOT, EX-OR
- 4. Write a program to implement Half Adder, Full Adder, and Parallel Adder

5. Write a GUI program to create a window wizard having two text labels, two text fields and two buttons as Submit and Reset.

## **TEXT BOOKS:**

- 1. Supercharged Python: Take your code to the next level, Overland.
- 2. Learning Python, Mark Lutz, O'reilly.

- 1. Python for Data Science, Dr. Mohd. Abdul Hameed, Wiley Publications 1<sup>st</sup> Ed. 2021.
- 2. Python Programming: A Modern Approach, Vamsi Kurama, Pearson.
- 3. Python Programming A Modular Approach with Graphics, Database, Mobile, and Web Applications, Sheetal Taneja, Naveen Kumar, Pearson.
- 4. Programming with Python, A User's Book, Michael Dawson, Cengage Learning, India Edition.
- 5. Think Python, Allen Downey, Green Tea Press.
- 6. Core Python Programming, W. Chun, Pearson.
- 7. Introduction to Python, Kenneth A. Lambert, Cengage.

## **FUELS AND LUBRICANTS LABORATORY**

# B.Tech. I Year II Sem.

| Course Code          | Category                | Hours/<br>Week |        |     | Credits  | Ma            | kimum     | Marks        |
|----------------------|-------------------------|----------------|--------|-----|----------|---------------|-----------|--------------|
| 23ME207              | Engineering<br>Sciences | <b>L</b>       | T<br>0 | P 2 | 1        | <b>CIA</b> 40 | SEE<br>60 | TOTAL<br>100 |
| Contact Classes: Nil | Tutorial Classes: Nil   | Practical C    |        |     | Classes: | Tot           | al Clas   | sses:32      |

**Prerequisite:** Chemistry

**Course Objectives:** To Understand the fuel and lubricants properties.

Course Outcomes: At the end of the course, students will be able to

- 1. Find the kinematic viscosity of lubricants and its variation with temperature
- 2. Determine the flash point, fire point, cloud point and pour point of liquid fuels
- 3. Determine the calorific value of solid, liquid and gaseous fuels
- 4. Determination of the dropping point of lubricating grease
- 5. Determination of distillation characteristics of petroleum products

# List of Experiments:

- 1. Determination of Flash and Fire points of Liquid fuels/Lubricants using: Abels Apparatus
- 2. Determination of Flash and Fire points of Liquid fuels/Lubricants using: Pensky Martens Apparatus
- 3. Carbon residue test: Liquid fuels.
- 4. Determination of Viscosity of Liquid lubricants and Fuels using: Saybolt Viscometer
- 5. Determination of Viscosity of Liquid lubricants and Fuels using: Redwood Viscometer
- 6. Determination of Viscosity of Liquid lubricants and Fuels using: Engler Viscometer
- 7. Determination of Calorific value: of Gaseous fuels using: Junkers Gas Calorimeter.
- 8. Determination of Calorific value: Solid/Liquid/ fuels using: Bomb Calorimeter.
- 9. Drop point and Penetration Apparatus for Grease.
- 10. ASTM Distillation Test Apparatus.
- 11. Cloud and Pour Point Apparatus.

# **ENGINEERING WORKSHOP**

#### B Tech I Year II Sem

| Course Code            | Category                 |                       | lour<br>Wee | - | Credits | Max | ximum   | mum Marks<br>SEE TOTAL |  |  |  |
|------------------------|--------------------------|-----------------------|-------------|---|---------|-----|---------|------------------------|--|--|--|
| 23ME208                | Humanities &             | L                     | T           | P | 2.5     | CIA | SEE     | TOTAL                  |  |  |  |
| 201111200              | Sciences                 | 1                     | 0           | 3 | 2.5     | 40  | 60      | 100                    |  |  |  |
| Contact Classes:<br>16 | Tutorial<br>Classes: Nil | Practical Classes: 48 |             |   |         | Tot | al Clas | sses:64                |  |  |  |

Pre-requisites: Practical skill

# **Course Objectives:**

- 1. To Study of different hand operated power tools, uses and their demonstration.
- 2. To gain a good basic working knowledge required for the production of various engineering products.
- 3. To provide hands on experience about use of different engineering materials, tools, equipments and processes those are common in the engineering field.
- 4. To develop a right attitude, team working, precision and safety at work place.
- 5. It explains the construction, function, use and application of different working tools, equipment and machines.
- 6. To study commonly used carpentry joints.
- 7. To have practical exposure to various welding and joining processes.
- 8. Identify and use marking out tools, hand tools, measuring equipment and to work to prescribed tolerances.

**Course Outcomes**: At the end of the course, the student will be able to:

- 1. Study and practice on machine tools and their operations
- 2. Practice on manufacturing of components using workshop trades including pluming, fitting, carpentry, foundry, house wiring and welding.
- 3. Identify and apply suitable tools for different trades of Engineering processes including drilling, material removing, measuring, chiseling.
- 4. Apply basic electrical engineering knowledge for house wiring practice.
- 5. Apply basic mechanical knowledge for metal cutting and use of power tools in construction of wood working.

# 1. TRADES FOR EXERCISES:

#### At least two exercises from each trade:

- I. Carpentry (T-Lap Joint, Dovetail Joint, Mortise & Tenon Joint)
- II. Fitting (V-Fit, Dovetail Fit & Semi-circular fit)
- III. Tin-Smithy (Square Tin, Rectangular Tray & Conical Funnel)

- IV. Foundry (Preparation of Green Sand Mould using Single Piece and Split Pattern)
- V. Welding Practice (Arc Welding & Gas Welding)
- VI. House-wiring (Parallel & Series, Two-way Switch and Tube Light)
- VII. Black Smithy (Round to Square, Fan Hook and S-Hook)

# 2. TRADES FOR DEMONSTRATION & EXPOSURE:

Plumbing, Machine Shop, Metal Cutting (Water Plasma), Power tools in construction and Wood Working

# **TEXT BOOKS:**

- 1. Workshop Practice /B. L. Juneja / Cengage
- 2. Workshop Manual / K. Venugopal / Anuradha.

- 1. Work shop Manual P. Kannaiah/ K.L. Narayana/ Scitech
- 2. Workshop Manual / Venkat Reddy/ BSP

# PROBABILITY, STATISTICS & COMPLEX VARIABLES

## B Tech II Year I Sem

| Course Code         | Category             | Hours/<br>Week |   |   | Credits  | Max | kimum   | mum Marks SEE TOTAL 60 100 I Classes:64 |  |  |
|---------------------|----------------------|----------------|---|---|----------|-----|---------|-----------------------------------------|--|--|
| 00754004            | Dania Galamaan       | L              | T | P | 4        | CIA | SEE     | TOTAL                                   |  |  |
| 23MA304             | Basic Sciences       | 3              | 1 | 0 | 4        | 40  | 60      | 100                                     |  |  |
| Contact Classes: 48 | Tutorial Classes: 16 | Practical (    |   |   | Classes: | Tot | al Clas | sses:64                                 |  |  |

Pre-requisites: Mathematics courses of first year of study.

Course Objectives: To learn

- 1. The ideas of probability and random variables and various discrete and continuous probability distributions and their properties.
- 2. The basic ideas of statistics including measures of central tendency, correlation and regression.
- 3. The statistical methods of studying data samples.
- 4. Differentiation and integration of complex valued functions.
- 5. Evaluation of integrals using Cauchy's integral formula and Cauchy's residue theorem.
- 6. Expansion of complex functions using Taylor's and Laurent's series.

**Course outcomes**: After learning the contents of this paper the student must be able to

- 1. Formulate and solve problems involving random variables and apply statistical methods for analyzing experimental data.
- 2. Distinguish between discrete and continuous probability distributions.
- 3. Apply concept of estimation and testing of hypothesis to case studies.
- 4. Analyze the complex function with reference to their analyticity, integration using Cauchy's integral and residue theorems.
- 5. Taylor's and Laurent's series expansions of complex function

# **UNIT-I: Basic Probability**

Probability spaces, conditional probability, independent events, and Baye's theorem. **Random variables:** Discrete and continuous random variables, Expectation of Random Variables, Variance of random variables.

# **UNIT-II: Probability distributions**

Binomial, Poisson, evaluation of statistical parameters for these distributions, Poisson approximation to the binomial distribution, Continuous random variables and their properties, distribution functions and density functions Normal and exponential, evaluation of statistical parameters for these distributions

# UNIT-III: Estimation & Damp; Tests of Hypotheses

Introduction, Statistical Inference, Classical Methods of Estimation.: Estimating the Mean, Standard Error of a Point Estimate, Prediction Intervals, Estimating a Proportion for single sample, Difference between Two Means, difference between two proportions for two Samples.

# Statistical Hypotheses:

General Concepts, Testing a Statistical Hypothesis, Tests Concerning a Single Mean, Tests on Two Means, Test on a Single Proportion, Two Samples: Tests on Two Proportions.

# **UNIT-IV: Complex Differentiation**

Limit, Continuity and Differentiation of Complex functions, Analyticity, Cauchy-Riemann equations (without proof), finding harmonic conjugate, elementary analytic functions (exponential, trigonometric, logarithm) and their properties Conformal mappings, Mobius transformations.

# **UNIT-V: Complex Integration**

Line integral, Cauchy's theorem, Cauchy's Integral formula, Zeros of analytic functions, Singularities, Taylor's series, Laurent's series, Residues, Cauchy Residue theorem (All theorems without Proof).

## **TEXT BOOKS:**

- 1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 35 th Edition, 2010.
- 2. Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, keying Ye, Probability and statistics for engineers and scientists, 9 th Edition, Pearson Publications.

- 1. Fundamentals of Mathematical Statistics, Khanna Publications, S. C. Guptha and V. K. Kapoor.
- 2. Miller and Freund's, Probability and Statistics for Engineers, 8 th Edition, Pearson Educations.
- 3. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2010.
- 4. J. W. Brown and R. V. Churchill, Complex Variables and Applications 7 th Edition, Mc-Graw Hill, 2004.

## MECHANICS OF SOLIDS

#### B Tech II Year I Sem

| Course Code         | Category          | Hours/<br>Week     |   |   | Credits  | Max | kimum   | mum Marks |  |  |  |
|---------------------|-------------------|--------------------|---|---|----------|-----|---------|-----------|--|--|--|
| 0015000             | D C               | L                  | T | P | _        | CIA | SEE     | TOTAL     |  |  |  |
| 23ME302             | Professional core | 3                  | 0 | 0 | 3        | 40  | 60      | 100       |  |  |  |
| Contact Classes: 48 | Tutorial Classes: | Practical C<br>Nil |   |   | Classes: | Tot | al Clas | sses:48   |  |  |  |

Course Pre-Requisites: Engineering Mechanics

**Course Objectives:** The objectives of this course are to:

- 1. Understand the concepts of internal forces, moments, stress, strain, and deformation of solids with applications to bars, beams, and columns.
- 2. Learn the fundamentals of applying equilibrium, compatibility, and force-deformation relationships to structural elements.
- 3. Study twisting of circular bars and hollow shafts acted on by torsional moments.
- 4. Define the state of stress at a point on a body and to develop stress transformations.
- 5. Introduce the concept of theories of elastic failure and their significance in the design.

Course Outcomes: At the end of the course, students will be able to:

- 1. Evaluate the internal forces, moments, stresses, strains, and deformations in structures made of various materials acted on by a variety of loads.
- 2. Draw axial force, shear force and bending moment diagrams for beams and frames.
- 3. Develop the Bending and Torsion formula and apply to the design of beams and shafts.
- 4. Use the stress transformation equations to find the state of stress at a point for various rotated positions of the stress element and display the same in graphical form as Mohr's circle.
- 5. Understand the different criteria for the safety of the component by applying the theories of elastic failure.

# UNIT - I:

**Simple Stresses & Strains:** Elasticity and plasticity – Types of stresses & strains–Hooke's law– stress – strain diagram for mild steel – Working stress – Factor of safety – Lateral strain, Poisson's ratio & volumetric strain – Elastic moduli & the relationship between them – Bars of varying section – composite bars – Temperature stresses. Strain energy – Resilience – Gradual, sudden, impact and shock loadings.

# UNIT - II:

**Shear Force and Bending Moment:** Definition of beam – Types of beams – Concept of shear force and bending moment – S.F and B.M diagrams for cantilever, simply supported and overhanging beams subjected to point loads, u.d.l., uniformly varying loads and combination of these loads – Point of contra flexure – Relation between S.F., B.M and rate of loading at a section of a beam.

## UNIT - III:

**Flexural Stresses:** Theory of simple bending – Assumptions – Derivation of bending equation: M/I = f/y = E/R Neutral axis – Determination bending stresses – section modulus of rectangular and circular sections (Solid and Hollow), I,T, Angle and Channel sections – Design of simple beam sections.

**Shear Stresses:** Derivation of formula – Shear stress distribution across various beams sections like rectangular, circular, triangular, I, T angle sections.

## UNIT - IV:

**Principal Stresses and Strains:** Introduction – Stresses on an inclined section of a bar under axial loading – compound stresses – Normal and tangential stresses on an inclined plane for biaxial stresses – Two perpendicular normal stresses accompanied by a state of simple shear – Mohr's circle of stresses – Principal stresses and strains – Analytical and graphical solutions.

**Theories of Failure**: Introduction – Various theories of failure - Maximum Principal Stress Theory, Maximum Principal Strain Theory, Strain Energy and Shear Strain Energy Theory (Von Mises Theory).

## UNIT - V:

**Torsion of Circular Shafts:** Theory of pure torsion – Derivation of Torsion equations:  $T/J = q/r = N\theta/L$ – Assumptions made in the theory of pure torsion – Torsional moment of resistance – Polar section modulus – Power transmitted by shafts – Combined bending and torsion and end thrust – Design of shafts according to theories of failure.

**Columns and Struts:** Euler's Theory, Limitations of Euler's theory, Equivalent Length, Rankine's Formula, Secant Formula.

## **TEXT BOOKS:**

- 1. Barry J. Goodno and James M. Gere, "Mechanics of Materials" Ninth Edition, CengageLearning, 2018.
- 2. S. S. Rattan, "Strength of Materials", Second Edition Tata McGraw Hill Education Pvt. Ltd, New Delhi, 2011

- 1. U. C. Jindal, "Strength of Materials", Pearson Education India, 2012
- 2. Egor P. Popov, Toader A. Balan, "Engineering Mechanics of Solids", PHI Learning, 2010
- 3. G. H. Ryder, "Strength of Materials", Macmillan Long Man Publications, 1961
- 4. W. A. Nash and M. C. Potter, "Strength of Materials", Fifth Edition, Schaum's Outline Series, 2011

#### **METALLURGY & MATERIAL SCIENCE**

## B Tech II Year I Sem

| Course Code         | Category          | Hours/<br>Week     |   |   | Credits  | Max | kimum   | 60 100  |  |  |
|---------------------|-------------------|--------------------|---|---|----------|-----|---------|---------|--|--|
| 001/15000           | Due foresterne 1  | L                  | T | P | _        | CIA | SEE     | TOTAL   |  |  |
| 23ME303             | Professional core | 3                  | 0 | 0 | 3        | 40  | 60      | 100     |  |  |
| Contact Classes: 48 | Tutorial Classes: | Practical C<br>Nil |   |   | Classes: | Tot | al Clas | sses:48 |  |  |

**Course Pre-requisites:** Engineering Materials.

Course Objectives: Students will be able to

- 1. Learn the concepts of metallurgy and materials science in manufacturing processes.
- 2. Interpret phase diagrams of different alloy systems.
- 3. Describe the concept of heat treatment and other strengthening mechanisms.

Course Outcomes: At the end of the course, student will be able to

- 1. CO1: Memorize the types of Crystal structures and their defects.
- 2. CO2: Learn the necessity of alloying and identify types of alloy phases.
- 3. CO3: Demonstrate importance of critical understanding of heat treatment in achieving required properties.
- 4. CO4: Apply the knowledge of heat treatment to enhance surface properties.
- 5. CO5: Analyze the properties and micro structure of ferrous and non-ferrous alloys and Develop new materials and enhance properties for the advanced applications.

# UNIT - I

Crystal Structure: Unit cells, Metallic and Ceramic crystal structures. Imperfection in solids: Point, line, surface and volume defects; dislocations, strengthening mechanisms, slip systems, critical resolved shear stress.

# UNIT - II

Hume – Rothery Rules: Alloys, substitutional and interstitial solid solutions- Phase diagrams: Interpretation of binary phase diagrams and microstructure development; eutectic, peritectic, Eutectiod, peritectoid and monotectic reactions. Iron Iron-carbide phase diagram and microstructural aspects of ledeburite, austenite, pearlite, ferrite and cementite.

# UNIT -III

Heat treatment of steels: Isothermal transformation diagrams for Fe-C alloys and microstructures development. Martensite, Bainite. Annealing. Normalising, Hardening, Tempering and Spheroidising.

# UNIT - IV

Continuous cooling curves and interpretation of final microstructures and properties— Thermo mechanical treatments like austempering, martempering, surface hardening methods like case hardening, carburizing, nitriding, cyaniding, carbo-nitriding, flame and induction hardening, vacuum and plasma hardening

## UNIT - V

Alloy steels, properties and applications of stainless steels and tool steels, maraging steels- Types of cast irons (grey, white, malleable and spheroidal graphite cast irons), copper and its alloys (Brass and bronze)- Aluminium and its alloys (Al-Cu Alloys). Ceramics and Composites: Types, properties and applications.

# **TEXT BOOKS:**

- 1. V. Raghavan, "Material Science and Engineering', Prentice Hall of India Private Limited, Fifth Edition.
- 2. William. D. Callister, David G. Rethwisch, "Materials Science and Engineering: AnIntroduction", John Wiley & Sons, 2018.
- 3. SIDNEY H AVNER, Introduction to Physical Metallurgy, McGraw Hill, 2017

- 1. Kenneth G. Budinski and Michael K. Budinski, "Engineering Materials", Prentice Hall of India Private Limited, 9th Edition, Indian Reprint, 2009.
- 2. U. C. Jindal, "Engineering Materials and Metallurgy", Pearson, 2011.

## PRODUCTION TECHNOLOGY

#### B Tech II Year I Sem.

| Course Code         | Category          | Hours/<br>Week     |   |   | Credits  | Max | ximum   | 60 100  |  |  |
|---------------------|-------------------|--------------------|---|---|----------|-----|---------|---------|--|--|
| 00157004            | Due foresterne 1  | L                  | T | P | _        | CIA | SEE     | TOTAL   |  |  |
| 23ME304             | Professional core | 3                  | 0 | 0 | 3        | 40  | 60      | 100     |  |  |
| Contact Classes: 48 | Tutorial Classes: | Practical C<br>Nil |   |   | Classes: | Tot | al Clas | sses:48 |  |  |

Pre-requisites: None

# **Course Objectives:**

- 1.To expose the students to understand the concept of basic casting processes & furnaces.
- 2.To provide a technical understanding of various joining processes used in the manufacturing industry
- 3.To impart the students to the concepts of solid-state welding processes.
- 4.To teach the concepts of rolling and various press working operations.
- 5.To provide a technical understanding of different metal forming processes like extrusion, forging and high energy rate forming processes.

## **Course Outcomes**: Student will be able to:

- 1. Elaborate the fundamentals of various moulding, casting techniques and furnaces.
- 2. Identify the importance of permanent joining and principle behind different welding processes.
- 3. Explain the concepts of solid-state welding processes
- 4. Understand the concepts of rolling and sheet metal operations in metal working.
- 5. Elaborates the uniqueness of extrusion, forging and high energy rate forming processes inmetal working.

## UNIT - I:

**Casting:** Steps involved in making a casting – Advantage of casting and its applications; Patterns - Pattern making, Types, Materials used for patterns, pattern allowances; Properties of moulding methods. Methods of Melting - Crucible melting and cupola operation – Defects in castings; Principles of Gating – Requirements – Types of gates, Design of gating systems – Riser – Function, types of Riser and Riser design. Casting processes – Types – Sand moulding, Centrifugal casting, die- casting, Investment casting, shell moulding

# UNIT - II:

**Welding:** Classification – Types of welds and welded joints and their characteristics, Welding Positions - Gas welding - Types, oxy-fuel gas cutting – standard time and cost calculations. Arc welding, Shielded metal arc welding, submerged arc welding, Resistance welding, Thermit welding.

#### UNIT - III:

Inert Gas Welding \_ TIG Welding, MIG welding, Friction welding, Friction Stir Welding, induction welding, explosive welding, Laser Welding; Soldering and Brazing; Heat affected zone in welding. Welding defects – causes and remedies; destructive and non-destructive testing of welds.

#### UNIT - IV:

Hot working, cold working, strain hardening, recovery, recrystallisation and grain growth. Sheet metal Operations: Stamping, Blanking and piercing, Coining, Strip layout, Hot and cold spinning – Bending and deep drawing. Rolling fundamentals – theory of rolling, types of Rolling mills and products. Forces in rolling and power requirements. Drawing and its types – wire drawing and Tube drawing – Types of presses and press tools. Forces and power requirement in the above operations.

# UNIT - V:

**Extrusion of Metals:** Basic extrusion process and its characteristics. Hot extrusion and cold extrusion - Forward extrusion and backward extrusion - Impact extrusion - Extruding equipment - Tube extrusion, Hydrostatic extrusion. Forces in extrusion.

**Forging Processes:** Forging operations and principles – Tools – Forging methods – Smith forging, Drop Forging – Roll forging – Forging hammers: Rotary forging – forging defects – cold forging, swaging, Forces in forging operations.

**High Energy Rate Forming Processes:** Principles of Explosive Forming, Electrohydraulic Forming, Electro-magnetic forming and rubber pad Forming.

# **TEXT BOOKS:**

- 1. Manufacturing Technology / P.N. Rao/ Vol.1 / Mc Graw Hill Education/ 5<sup>th</sup> Edition, 2018.
- 2. Manufacturing Engineering & Technology / Serope Kalpakjian / Steven R. Schmid / Pearson, 7th Edition, 2014

- 1. Production Technology Vol.: 1, WILEY, sreeramulu M, 2018
- 2. A Text book of Production Technology (Manufacturing Processes) / Dr.P.C. Sharma / S.Chand Publications / 1st Edition, 2006.
- 3. Manufacturing processes H. S. Shan, Second Edition, Cambridge University Press, 2017.
- Production Technology: Manufacturing Processes, Technology and Automation / R. K. Jain /Vol.1/Khanna Publishers /19<sup>th</sup> Edition, 2009.
- 5. Elements of Workshop Technology/ S.K. Hajra Choudhury, A.K. Hajra Choudhury, Nirjhar Roy/Vol.1/ Media Publishers & Promoters Pvt. Ltd./1st Edition,2008.

#### **THERMODYNAMICS**

#### B Tech II Year I Sem.

| Course Code         | Category            | Hours/<br>Week |   |   | Credits  | Max | kimum   | Marks   |
|---------------------|---------------------|----------------|---|---|----------|-----|---------|---------|
| 22157225            | D C                 | L              | T | P | 0        | CIA | SEE     | TOTAL   |
| 23ME305             | Professional core   | 3              | 1 | 0 | 3        | 40  | 60      | 100     |
| Contact Classes: 48 | Tutorial Classes:16 | Practical (    |   |   | Classes: | Tot | al Clas | sses:64 |

**Pre-requisite**: Engineering Chemistry and Physics

**Course Objective**: To understand the treatment of classical Thermodynamics and to apply the First and Second laws of Thermodynamics to engineering applications

Course Outcomes: At the end of the course, the student should be able to

- 1. Understand the basics of Thermodynamics
- 2. Apply first and second laws of thermodynamics to different systems
- 3. Determine the feasibility of a process w.r.to entropy changes
- 4. Apply concepts of thermodynamic property relations to ideal gas and real gases
- 5. Evaluate performance of power cycles and refrigeration cycles

# Tables/Codes: Steam Tables and Mollier Chart, Refrigeration Tables

# UNIT - I:

**Introduction: Basic Concepts:** System, Control Volume, Surrounding, Boundaries, Universe, Types of Systems, Macroscopic and Microscopic viewpoints, Concept of Continuum, Thermodynamic Equilibrium, State, Property, Process, Exact & Inexact Differentials, Cycle – Reversibility – Quasi – static Process, Irreversible Process, Causes of Irreversibility – Energy in State and in Transition, Types, Displacement & Other forms of Work, Heat, Point and Path functions, Zeroth Law of Thermodynamics – Concept of Temperature – Principles of Thermometry – Reference Points – Const. Volume gas Thermometer – Scales of Temperature, Ideal Gas Scale

# UNIT - II:

PMM I - Joule's Experiments - First law of Thermodynamics - Corollaries - First law applied to a Process - applied to a flow system - Steady Flow Energy Equation.

Limitations of the First Law - Thermal Reservoir, Heat Engine, Heat pump, Parameters of performance, Second Law of Thermodynamics, Kelvin-Planck and Clausius Statements and their Equivalence / Corollaries, PMM of Second kind, Carnot's principle, Carnot cycle and its specialties, Thermodynamic scale of Temperature, Clausius Inequality, Entropy, Principle of Entropy Increase - Energy Equation, Availability and Irreversibility - Thermodynamic Potentials, Gibbs and Helmholtz Functions, Maxwell Relations - Elementary Treatment of the Third Law of Thermodynamics

## UNIT - III:

Pure Substances, p-V-T- surfaces, T-S and h-s diagrams, Mollier Charts, Phase Transformations – Triple point at critical state properties during change of phase, Dryness Fraction – Clausius – Clapeyron Equation Property tables. Mollier charts – Various Thermodynamic processes and energy Transfer – Steam Calorimetry.

Perfect Gas Laws – Equation of State, specific and Universal Gas constants – various Non-flow processes, properties, end states, Heat and Work Transfer, changes in Internal Energy – Throttling and Free Expansion Processes – Flow processes

## UNIT - IV:

Deviations from perfect Gas Model – Vader Waals Equation of State – Compressibility charts – variable specific Heats – Gas Tables

Mixtures of perfect Gases – Mole Fraction, Mass friction Gravimetric and volumetric Analysis – Dalton's Law of partial pressure, Avogadro's Laws of additive volumes – Mole fraction, Volume fraction and partial pressure, Equivalent Gas const. And Molecular Internal Energy, Enthalpy, sp. Heats and Entropy of Mixture of perfect Gases and Vapour, Atmospheric air – Psychrometric Properties – Dry bulb Temperature, Wet Bulb Temperature, Dew point Temperature, Thermodynamic Wet Bulb Temperature, Specific Humidity, Relative Humidity, saturated Air, Vapour pressure, Degree of saturation – Adiabatic Saturation, Carrier's Equation – Psychrometric chart.

## UNIT - V:

**Power Cycles:** Otto, Diesel, Dual Combustion cycles, Sterling Cycle, Atkinson Cycle, Ericsson Cycle, Lenoir Cycle – Description and representation on P–V and T-S diagram, Thermal Efficiency, Mean Effective Pressures on Air standard basis – comparison of Cycles, Brayton and Rankine cycles – Performance Evaluation.

**Refrigeration Cycles:** Bell-Coleman cycle, Vapour compression cycle-performance Evaluation.

## **TEXT BOOKS:**

- 1. Engineering Thermodynamics / PK Nag / Mc Graw Hill
- 2. Thermodynamics An Engineering Approach by Yunus A. Cengel & Michael A. Boles, TMH
- 3. Fundamentals of Classical Thermodynamics by G. Van Wylan & R.E. Sonntag, John WileyPub

- 1. Engineering Thermodynamics by Jones & Dugan, PHI, 2007.
- 2. Thermodynamics by M. Achutan, PHI, 2<sup>nd</sup> Edition, 2013.
- 3. Thermodynamics & Heat Engines by R. Yadav, Central Book Depot, Allahabad.
- 4. Thermodynamics by S.C. Gupta, Pearson Publications.

#### PRODUCTION TECHNOLOGY LABORATORY

#### B Tech II Year I Sem.

| Course Code          | Category              | Hours/<br>Week |   |   | Credits  | Max | kimum   | mum Marks SEE TOTAL 60 100 Classes:32 |  |  |
|----------------------|-----------------------|----------------|---|---|----------|-----|---------|---------------------------------------|--|--|
| 00147006             | Due forcional cons    | L              | T | P | 1        | CIA | SEE     | TOTAL                                 |  |  |
| 23ME306              | Professional core     | 0              | 0 | 2 | 1 1      | 40  | 60      | 100                                   |  |  |
| Contact Classes: Nil | Tutorial Classes: Nil | Practical C    |   |   | Classes: | Tot | al Clas | sses:32                               |  |  |

Pre-requisites: Production Technology

# **Course Objectives:**

- 1. Know about the basic Physical, Chemical Properties of materials
- 2. Learn the basic operation of various manufacturing processes
- 3. Design and fabricate a simple product

Course Outcomes: After completion of the course, the student will be able to

- 1. Analyze the given problem and conducts investigation on the experimental setup.
- 2. Operate different types of welding machines
- 3. Perform operations on mechanical press.
- 4. Get familiarity with processing of Plastics.
- 5. Effectively communicate and explain the experimental analysis.

# Minimum of 12 Exercises need to be performed

# I. Metal Casting Lab:

- 1. Pattern Design and making for one casting drawing.
- 2. Sand properties testing Exercise -for strengths, and permeability 1
- 3. Moulding Melting and Casting 1 Exercise

# II. Welding Lab:

- 1. ARC Welding Lap & Butt Joint 2 Exercises
- 2. Spot Welding 1 Exercise
- 3. TIG Welding 1 Exercise
- 4. Plasma welding and Brazing 2 Exercises (Water Plasma Device)

# III. Mechanical Press Working:

- 1. Blanking & Piercing operation and study of simple, compound and progressive press tool.
- 2. Hydraulic Press: Deep drawing and extrusion operation.
- 3. Bending and other operations

# IV. Processing of Plastics

- 1.Injection Moulding
- 2.Blow Moulding

# REFERENCE BOOK:

1. Dictionary of Mechanical Engineering - G.H.F. Nayler, Jaico Publishing House

#### MATERIAL SCIENCE & MECHANICS OF SOLIDS LABORATORY

## B Tech II Year I Sem.

| Course Code          | Category              | Hours/<br>Week |   |   | Credits  | Max | kimum  | 60 100  |  |  |
|----------------------|-----------------------|----------------|---|---|----------|-----|--------|---------|--|--|
| 23ME307              | Professional core     | L              | T | P | 1        | CIA | SEE    | TOTAL   |  |  |
| 20ME007              | 1 Totessional core    | 0              | 0 | 2 | 1        | 40  | 60     | 100     |  |  |
| Contact Classes: Nil | Tutorial Classes: Nil | Practical C    |   |   | Classes: | Tot | al Cla | sses:32 |  |  |

Pre-Requisites: Material Science and Metallurgy

**Course Objective:** The Objective is to make the students to learn the concepts of Metallurgy and Material Science in manufacturing processes, which convert raw materials into useful products. Students will be able to understand basic structure and crystal arrangements of materials and classify and distinguish different microstructures of steels, cast irons and non-ferrous alloys.

**Course Outcomes:** At the end of the lab, the student will be able to

- 1. Design different crystal structures and their models.
- 2. Infer the microstructures developed for different ferrous and non-ferrous metals.
- 3. Correlate the microstructures, properties, performance and processing of alloys.

# List of Experiments:

- 1. Preparation and study of crystal models for simple cubic, body centred cubic, face centred cubic and hexagonal close packed structures.
- 2. Preparation and study of the Microstructure of pure metals like Iron, Cu and Al.
- 3. Preparation and study of the Microstructure of Mild steels, low carbon steels, high Carbon steels.
- 4. Study of the Microstructures of Various Cast Irons.
- 5. Study of the Microstructures of Non-Ferrous alloys. (Al, Cu, Mg)
- 6. Harden ability of steels by Jominy End Quench Test.

#### COMPUTER AIDED MACHINE DRAWING

## B Tech II Year I Sem.

| Course Code          | Category              | Hours/<br>Week     |   |   | Credits  | Max | kimum   | 60 100  |  |  |
|----------------------|-----------------------|--------------------|---|---|----------|-----|---------|---------|--|--|
| 23ME308              | Professional core     | L                  | T | P | 1        | CIA | SEE     |         |  |  |
|                      |                       | O                  | O | 2 |          | 40  | 60      | 100     |  |  |
| Contact Classes: Nil | Tutorial Classes: Nil | Practical Cl<br>32 |   |   | Classes: | Tot | al Clas | sses:32 |  |  |

Pre-requisites: Engineering Graphics

**Course objectives:** To familiarize with the standard conventions for different materials and machine parts in working drawings. To make part drawings including sectional views for various machine elements. To prepare assembly drawings given the details of part drawings.

## **Course Outcomes**: Students will be able to:

- 1. Prepare of engineering and working drawings with dimensions and bill of material during design and development. Developing assembly drawings using part drawings of machine components.
- 2. Draw conventional representation of materials, common machine elements and parts such as screws, nuts, bolts, keys, gears, webs, ribs.
- 3. Draw types of sections selection of section planes and drawing of sections and auxiliary sectional views. Parts not usually sectioned.
- 4. Understand methods of dimensioning, general rules for sizes and placement of dimensions for holes, centers, curved and tapered features.
- 5. Know title boxes, their size, location and details common abbreviations and their liberal usage

# Drawing of Machine Elements and simple parts

Selection of Views, additional views for the following machine elements and parts with every drawing proportion.

- 1. Popular forms of Screw threads, bolts, nuts, stud bolts, tap bolts, set screws.
- 2. Keys, cottered joints and knuckle joint.
- 3. Rivetted joints
- 4. Shaft coupling, spigot and socket pipe joint.
- 5. Journal, pivot and collar and foot step bearings.

# Drawing of Machine Elements: Using Computer aided drafting in addition to manual drawing

# **Assembly Drawings:**

Drawings of assembled views for the part drawings of the following using conventions and easydrawing proportions.

- 1. Steam engine parts stuffing box, cross head, Eccentric.
- 2. Machine tool parts: Tail stock, Tool Post, Machine Vices.
- 3. Other machine parts Screw jack, Connecting rod, Plumber block, Fuel Injector
- 4. Valves Steam stop valve, spring loaded safety valve, feed check valve and air cock.

# Assembly Drawings: Using Computer aided drafting in addition to manual drawing

## NOTE:

- 1. First angle projection to be adopted.
- 2. All the drawing components/Assembly to be drawn using any Computer aided draftingpackage

# **TEXT BOOKS:**

- 1. Machine Drawing / N.D. Bhatt / Charotar
- 2. Machine Drawing with Auto CAD / Goutham Pohit, Goutam Ghosh / Pearson

# **REFERENCE BOOKS:**

- 1. Machine Drawing by / Bhattacharyya / Oxford
- 2. Machine Drawing / Ajeet Singh / Mc Graw Hill

**Note:** - External examination is conducted in conventional mode and internal evaluation to be done by both conventional as well as using computer aided drafting.

#### CONSTITUTION OF INDIA

## B Tech II Year I Sem.

| Course Code        | Category              | Hours/<br>Week |   |   | Credits | Max | kimum   | Marks   |
|--------------------|-----------------------|----------------|---|---|---------|-----|---------|---------|
| 1500000            | Wandatana Garana      | L              | T | P |         | CIA | SEE     | TOTAL   |
| MC3002             | Mandatory Course      | 3              | 0 | 0 | 0       | 40  | 60      | 100     |
| Contact Classes:48 | Tutorial Classes: Nil | Practical (    |   |   |         | Tot | al Clas | sses:48 |

# Course Objectives: Students will be able to:

- 1. Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective.
- 2. To address the growth of Indian opinion regarding modern Indian intellectuals' constitutional role and entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian nationalism.
- 3. To address the role of socialism in India after the commencement of the Bolshevik Revolution in 1917 and its impact on the initial drafting of the Indian Constitution.

## Course Outcomes: Students will be able to:

- 1. Discuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of Gandhi in Indian politics.
- 2. Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.
- 3. Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution
- 4. Discuss the passage of the Hindu Code Bill of 1956.
- **Unit 1**: History of Making of the Indian Constitution- History of Drafting Committee.
- **Unit 2**: Philosophy of the Indian Constitution- Preamble Salient Features.
- **Unit 3**: Contours of Constitutional Rights & Duties Fundamental Rights
  - 1. Right to Equality
  - 2. Right to Freedom
  - 3. Right against Exploitation
  - 4. Right to Freedom of Religion
  - 5. Cultural and Educational Rights
  - 6. Right to Constitutional Remedies
  - 7. Directive Principles of State Policy
  - 8. Fundamental Duties.
- **Unit 4:** Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications, Powers and Functions

**Unit - 5**: Local Administration: District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation. Panchayat raj: Introduction, PRI: Zila Panchayat. Elected officials and their roles, CEO Zila Panchayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy

**Unit – 6**: Election Commission: Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

# Suggested Reading:

- 1. The Constitution of India, 1950 (Bare Act), Government Publication.
- 2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition,
- 3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- 4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

#### BASIC ELECTRICAL AND ELECTRONICS ENGINEERING

## B Tech II Year II Sem.

| Course Code        | Category              | Hours/<br>Week      |   |   | Credits | Max | kimum                           | SEE TOTAL |  |  |
|--------------------|-----------------------|---------------------|---|---|---------|-----|---------------------------------|-----------|--|--|
| 23EE401            | Engineering           | L                   | T | P | 3       | CIA | SEE TOTAL 60 100 cal Classes:48 |           |  |  |
| 23EE401            | Science               | 3                   | 0 | 0 | 3       | 40  | 60                              | 100       |  |  |
| Contact Classes:48 | Tutorial Classes: Nil | Practical C<br>Nill |   |   |         | Tot | al Clas                         | sses:48   |  |  |

# **Course Objectives:**

- 1. To introduce the concepts of electrical circuits and its components
- 2. To understand magnetic circuits, DC circuits and AC single phase & amp; three phase circuits
- 3. To study and understand the different types of DC/AC machines and Transformers.
- 4. To import the knowledge of various electrical installations.
- 5. To introduce the concept of power, power factor and its improvement.
- 6. To introduce the concepts of diodes & Directors, and
- 7. To impart the knowledge of various configurations, characteristics and applications.

## **Course Outcomes:**

- 1. To analyze and solve electrical circuits using network laws and theorems.
- 2. To understand and analyze basic Electric and Magnetic circuits
- 3. To study the working principles of Electrical Machines
- 4. To introduce components of Low Voltage Electrical Installations
- 5. To identify and characterize diodes and various types of transistors.

# UNIT - I:

**D.C. Circuits:** Electrical circuit elements (R, L and C), voltage and current sources, Ohms Law, KVL& amp; KCL, analysis of simple circuits with dc excitation.

**A.C. Circuits:** Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor, Analysis of single-phase ac circuits, Three- phase balanced circuits, voltage and current relations in star and delta connections.

## UNIT - II:

**Electrical Installations:** Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing. Types of Batteries, Important Characteristics for Batteries. Elementary calculations for energy consumption, power factor improvement and battery backup.

#### UNIT - III:

Electrical Machines: Working principle of Single-phase transformer, equivalent circuit, losses in transformers, efficiency, Three-phase transformer connections. Construction and working principle of DC generators, EMF equation, working principle of DC motors, Torque equations and Speed control of DC motors, Construction and working principle of Three-phase Induction motor, Torques equations and Speed control of Three-phase induction motor. Construction and working principle of synchronous generators.

# UNIT - IV:

**P-N Junction and Zener Diode:** Principle of Operation Diode equation, Volt-Ampere characteristics, Zener diode characteristics and applications.

**Rectifiers and Filters:** P-N junction as a rectifier - Half Wave Rectifier, Ripple Factor - Full Wave Rectifier, Bridge Rectifier, Harmonic components in Rectifier Circuits, Filters - Inductor Filters, Capacitor Filters, L-section filters,  $\pi$ -section filters.

## UNIT - V:

**Bipolar Junction Transistor (BJT**): Construction, Principle of Operation, Amplifying Action, Common Emitter, Common Base and Common Collector configurations, Comparison of CE, CB and CC configurations.

**Field Effect Transistor (FET):** Construction, Principle of Operation, Comparison of BJT and FET, Biasing FET.

# **TEXT BOOKS:**

- 1. Basic Electrical and electronics Engineering –M S Sukija TK Nagasarkar Oxford University
- 2. Basic Electrical and electronics Engineering-D P Kothari. I J Nagarath, McGraw Hill Education

- 1. Electronic Devices and Circuits R. L. Boylestad and Louis Nashelsky, PEI/PHI, 9 th Ed, 2006.
- 2. Millman's Electronic Devices and Circuits J. Millman and C. C. Halkias, Satyabrata Jit, TMH, 2/e, 1998.
- 3. Engineering circuit analysis- by William Hayt and Jack E. Kemmerly, McGraw
- 4. Hill Company, 6 th edition.
- 5. Linear circuit analysis (time domain phasor and Laplace transform approaches) 2<sup>nd</sup> edition by Raymond A. De Carlo and Pen-Min-Lin, Oxford University Press-2004.
- 6. Network Theory by N. C. Jagan& C. Lakshminarayana, B.S. Publications.
- 7. Network Theory by Sudhakar, Shyam Mohan Palli, TMH.
- 8. L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press,2011.
- 9. E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.
- 10. D. Toro, "Electrical Engineering Fundamentals", Prentice Hall India, 1989.

### KINEMATICS OF MACHINERY

## B Tech II Year II Sem.

| Course Code        | Category              | Hours/<br>Week |   |   | -                          |     |     | Credits | Max | Maximum Marks |         |  |
|--------------------|-----------------------|----------------|---|---|----------------------------|-----|-----|---------|-----|---------------|---------|--|
| 001/17/00          | Professional core     | L              | T | P | 2                          | CIA | SEE | TOTAL   |     |               |         |  |
| 23ME402            |                       | 3              | 0 | 0 | 3                          | 40  | 60  | 100     |     |               |         |  |
| Contact Classes:48 | Tutorial Classes: Nil |                |   |   | Practical Classes:<br>Nill |     |     |         | Tot | al Clas       | sses:48 |  |

**Prerequisites:** Basic principles of Mechanics

**Course Objectives:** The objectives of this course are

- 1. To introduce the concept of machines, mechanisms and related terminologies and the relative motion, velocity, and accelerations of the various elements in a mechanism.
- 2. To make the students become familiar with the most commonly used mechanisms such as four bar/slider crank/double slider crank mechanisms and their inversions.
- 3. To provide an overview of straight-line motion mechanisms, steering mechanisms and Hooke's joint.
- 4. To familiarize higher pairs like cams and principles of cams design.
- 5. To understand the kinematic analysis of gears & gear trains.

**Course Outcomes:** At the end of the course, students will be able to:

- 1. Understand the various elements in mechanism and the inversions of commonly used mechanisms such as four bar, slider crank and double slider crank mechanisms.
- 2. Draw the velocity and acceleration polygons for a given configuration of a mechanism.
- 3. Understand the conditions for straight line motion mechanisms, steering mechanism and the usage of Hooke's joint.
- 4. Draw the displacement diagrams and cam profile diagram for followers executing different types of motions and various configurations of followers.
- 5. Calculate the number of teeth and velocity ratio required for a given combination of gears.

## UNIT - I:

**Mechanisms:** Elements or Links – Classification – Rigid Link, flexible and fluid link – Types of kinematics pairs – sliding, turning, rolling, screw and spherical pairs – lower and higher pairs – closed and open pairs – constrained motion – completely, partially or successfully and incompletely constrained.

**Mechanism and Machines** – Mobility of Mechanisms: Grubler's criterion, classification of machines – kinematics chain – inversions of mechanism – inversions of quadric cycle chain, single and double slider crank chains, Mechanical Advantage.

#### UNIT - II:

**Kinematics:** Velocity and acceleration – Motion of link in machine – Determination of Velocity and acceleration – Graphical method – Application of relative velocity method.

**Plane motion of body:** Instantaneous center of rotation- centrodes and axodes – Three centers in line theorem – Graphical determination of instantaneous center, determination of angular velocity of points and links by instantaneous center method. Kliens construction - Coriolis acceleration - determination of Coriolis component of acceleration

**Analysis of Mechanisms:** Analysis of slider crank chain for displacement- velocity and acceleration of slider – Acceleration diagram for a given mechanism.

#### UNIT - III:

**Straight-line motion mechanisms:** Exact and approximate copied and generated types – Peaucellier - Hart - Scott Russel – Grasshopper – Watt -Tchebicheff's and Robert Mechanism – Pantographs.

**Steering gears:** Conditions for correct steering – Davis Steering gear, Ackerman's steering gear.

**Hooke's Joint:** Single and double Hooke's joint -velocity ratio - application - problems.

## UNIT - IV:

**Cams:** Definitions of cam and followers – their uses – Types of followers and cams – Terminology – Types of follower motion - Uniform velocity, Simple harmonic motion and uniform acceleration and retardation. Maximum velocity and maximum acceleration during outward and return strokes in the above 3 cases.

**Analysis of motion of followers:** Tangent cam with Roller follower – circular arc cam with straight, concave and convex flanks.

## UNIT - V:

**Higher pair:** Friction wheels and toothed gears – types – law of gearing, condition for constant velocity ratio for transmission of motion – velocity of sliding

Forms of teeth, cycloidal and involutes profiles – phenomena of interferences – Methods of interference. Condition for minimum number of teeth to avoid interference – expressions for arc of contact and path of contact of Pinion & Gear and Pinion & Rack Arrangements– Introduction to Helical – Bevel and worm gearing

**Gear Trains:** Introduction – Types – Simple – compound and reverted gear trains – Epicyclic gear train. Methods of finding train value or velocity ratio of Epicyclic gear trains. Selection of gear box - Differential gear for an automobile.

# **TEXT BOOKS:**

- 1. Rattan, S.S, "Theory of Machines", 4th Edition, Tata McGraw-Hill, 2014.
- 2. Uicker, J.J., Pennock G.R and Shigley, J.E., "Theory of Machines and Mechanisms", 4 th Edition, Oxford University Press, 2014.

- 1. Sadhu Sigh, "Theory of Machines", Third Edition, Pearson Education, 2012.
- 2. Thomas Bevan, "Theory of Machines", 3rd Edition, CBS Publishers and Distributors, 2005.
- 3. Robert L. Norton, "Kinematics and Dynamics of Machinery", Tata McGraw-Hill, 2009.
- 4. Rao. J.S. and Dukkipati. R.V. "Mechanisms and Machine Theory", Wiley-Eastern Ltd., NewDelhi, 1992.

#### FLUID MECHANICS & HYDRAULIC MACHINES

## B Tech II Year II Sem.

| Course Code        | Category              | Hours/<br>Week |   |   | Credits                    | Max | kimum | Marks |     |         |         |
|--------------------|-----------------------|----------------|---|---|----------------------------|-----|-------|-------|-----|---------|---------|
| 00157100           | Professional core     | L              | T | P | _                          | CIA | SEE   | TOTAL |     |         |         |
| 23ME403            |                       | 3              | 0 | 0 | 3                          | 40  | 60    | 100   |     |         |         |
| Contact Classes:48 | Tutorial Classes: Nil |                |   |   | Practical Classes:<br>Nill |     |       |       | Tot | al Clas | sses:48 |

# **Course Objectives:** To enable the student:

- 1. To understand the basic principles of fluid mechanics
- 2. To identify various types of flows
- 3. To understand boundary layer concepts and flow through pipes
- 4. To evaluate the performance of hydraulic turbines
- 5. To understand the functioning and characteristic curves of pumps

# **Course Outcomes:**

- 1. Able to explain the effect of fluid properties on a flow system.
- 2. Able to identify type of fluid flow patterns and describe continuity equation.
- 3. To analyze a variety of practical fluid flow and measuring devices and utilize Fluid Mechanics principles in design and Able to demonstrate boundary layer concepts.
- 4. To select and analyze an appropriate turbine with reference to given situation in power plants.
- 5. To estimate performance parameters of a given Centrifugal and Reciprocating pump.

# UNIT - I:

**Fluid statics**: Dimensions and units: physical properties of fluids- specific gravity, viscosity, and surface tension - vapour pressure and their influence on fluid motion-atmospheric, gauge and vacuum pressures – measurement of pressure- Piezometer, U-tube and differential manometers.

#### UNIT - II:

**Fluid kinematics**: Stream line, path line and streak lines and stream tube, classification of flows- steady & unsteady, uniform & non-uniform, laminar & turbulent, rotational & irrotational flows-equation of continuity for one dimensional flow and three-dimensional flows.

**Fluid dynamics**: Surface and body forces –Euler's and Bernoulli's equations for flow along a stream line, momentum equation and its application on force on pipe bend.

# UNIT - III:

**Boundary Layer Concepts:** Definition, thicknesses, characteristics along thin plate, laminar and turbulent boundary layers (No derivation) boundary layer in transition, separation of boundary layer, submerged objects – drag and lift.

**Closed conduit flow:** Reynold's experiment- Darcy Weisbach equation- Minor losses in pipes- pipes in series and pipes in parallel- total energy line-hydraulic gradient line. Measurement of flow: Pitot tube, venturi meter, and orifice meter, Flow nozzle

# UNIT - IV:

**Basics of turbo machinery:** Hydrodynamic force of jets on stationary and moving flat, inclined, and curved vanes, jet striking centrally and at tip, velocity diagrams, work done and efficiency, flow over radial vanes.

**Hydraulic Turbines:** Classification of turbines, Heads and efficiencies, impulse and reaction turbines, Pelton wheel, Francis turbine and Kaplan turbine-working proportions, work done, efficiencies, hydraulic design –draft tube theory- functions and efficiency.

**Performance of hydraulic turbines**: Geometric similarity, Unit and specific quantities, characteristic curves, governing of turbines, selection of type of turbine, cavitation, surge tank, water hammer.

#### UNIT - V:

**Centrifugal pumps**: Classification, working, work done – barometric head-losses and efficiencies specific speed- performance characteristic curves, NPSH.

Reciprocating pumps: Working, Discharge, slip, indicator diagrams.

# **TEXT BOOKS:**

- 1. Hydraulics, Fluid mechanics and Hydraulic Machinery MODI and SETH, 21<sup>st</sup> Edition, standard Book House.
- 2. Fluid Mechanics and Hydraulic Machines by Er. R. K. Rajput, S. Chand, 2019.

- 1. Fluid Mechanics and Fluid Power Engineering by D.S. Kumar, S.K. Kataria & Sons, 2018
- 2. Fluid Mechanics and Machinery by D. Rama Durgaiah, New Age International publishers
- 3. Hydraulic Machines by T.R.Banga & S.C. Sharma, 7th Edition, Khanna Publishers

#### **IC ENGINES & GAS TURBINES**

## B Tech II Year II Sem.

| Course Code        | Category              | Hours/<br>Week       |   |   | -                          |     |     | ' ('#A/11Ts |     |         | Credits | Max | kimum | Marks |
|--------------------|-----------------------|----------------------|---|---|----------------------------|-----|-----|-------------|-----|---------|---------|-----|-------|-------|
| 23ME404            | Professional core     | L                    | T | P | 3                          | CIA | SEE | TOTAL       |     |         |         |     |       |       |
| 25ME+0+            |                       | 3                    | 0 | 0 | 3                          | 40  | 60  | 100         |     |         |         |     |       |       |
| Contact Classes:48 | Tutorial Classes: Nil | Practical Cl<br>Nill |   |   | Practical Classes:<br>Nill |     |     |             | Tot | al Clas | sses:48 |     |       |       |

**Pre-requisite**: Thermodynamics

# Course Objective:

- 1. Explain the Components of IC Engines and systems.
- 2. Analyze the stages of combustion to improve the performance of IC engines with respect to fuel economy and control of emissions in global, environmental and social context.
- 3. Understand and evaluate the performance analysis of the major components and systems of IC engines and their applications.
- 4. Explore to the components and working principles of rotary, reciprocating, dynamic and axial compressors.
- 5. Understand the significance of gas turbines in real context in power generation.

Course Outcomes: At the end of the course, the student should be able to

- 1. Elaborate the working principles of IC Engine systems and its classification.
- 2. Explore the combustion stages of SI and CI engines, and factors influence for better combustion.
- 3. Evaluate the testing and performance parameters of IC engines.
- 4. Explain the function and working principles of rotary, reciprocating, dynamic axial compressors.
- 5. Understand the working principle of gas turbine and its classification with thermodynamicanalysis.

#### UNIT - I:

**I.C. Engines:** Classification - Working principles of Four & Two stroke engine, SI & CI engines, Valve and Port Timing Diagrams, Air - Standard, air-fuel and actual cycles - Engine systems - Carburetor and Fuel Injection Systems for SI engines, Fuel injection systems for CI engines, Ignition, Cooling and Lubrication system, Fuel properties and Combustion Stoichiometry.

# UNIT - II:

Normal Combustion and abnormal combustion in SI engines – Importance of flame speed and effect of engine variables – Abnormal combustion, pre-ignition and knocking in SI Engines – Fuel requirements and fuel rating, anti-knock additives – combustion chamber – requirements, types of SI engines.

Four stages of combustion in CI engines – Delay period and its importance – Effect of engine variables – Diesel Knock– Need for air movement, suction, compression and combustion induced turbulence in Diesel engine – open and divided combustion chambers and fuel injection– Diesel fuel requirements and fuel rating

#### UNIT - III:

**Testing and Performance:** Parameters of performance - measurement of cylinder pressure, fuel consumption, air intake, exhaust gas composition, Brake power - Determination of frictional losses and indicated power - Performance test - Heat balance sheet and chart Classification of compressors-Fans, blowers and compressors - positive displacement and dynamic types - reciprocating and rotary types.

**Reciprocating Compressors:** Principle of operation, work required, Isothermal efficiency volumetric efficiency and effect of clearance volume, staged compression, under cooling, saving of work, minimum work condition for staged compressio

## UNIT - IV:

Rotary Compressor (Positive displacement type): Roots Blower, vane sealed compressor, mechanical details and principle of working – efficiency considerations.

**Dynamic Compressors:** Centrifugal compressors: Mechanical details and principle of operation – velocity and pressure variation. Energy transfer-impeller blade shapelosses, slip factor, power input factor, pressure coefficient and adiabatic coefficient – velocity diagrams – power.

**Axial Flow Compressors:** Mechanical details and principle of operation – velocity triangles and energy transfer per stage degree of reaction, work done factor - isentropic efficiency- pressure rise calculations – Polytropic efficiency.

## UNIT - V:

**Gas Turbines:** Simple Gas Turbine Plant – Ideal Cycle – Closed Cycle and Open Cycle for Gast Turbines, Constant Pressure Cycle, Constant Volume Cycle, Efficiency – Work Ratio and Optimum Pressure Ration for Simple Gas Turbine Cycle. Parameters of Performance, Actual Cycle.

### TEXT BOOKS:

- 1. I.C. Engines, V. Ganesan, 4th Edition, Mc Graw Hill
- 2. Thermal Engineering, Mahesh M Rathore, Tata Mc Graw Hill, 2010

- 1. Applied Thermodynamics for Engineering Technologists, Eastop & McConkey, Pearson
- 2. Fundamentals of Classical Thermodynamics, Vanwylen G.J., Sonntag R.E., Wiley Eastern
- 3. Internal Combustion Engines Fundamentals, John B. Heywood, McGraw Hill Ed.

# INSTRUMENTATION AND CONTROL SYSTEMS

#### B Tech II Year II Sem.

| Course Code        | Category              | Hours/<br>Week |   |   | -                          |     |     | •     |     |         | - 1     |  |  | Credits | Max | Maximum Marks |  |  |
|--------------------|-----------------------|----------------|---|---|----------------------------|-----|-----|-------|-----|---------|---------|--|--|---------|-----|---------------|--|--|
| 00157105           | Professional core     | L              | T | P | 0                          | CIA | SEE | TOTAL |     |         |         |  |  |         |     |               |  |  |
| 23ME405            |                       | 3              | 0 | 0 | 3                          | 40  | 60  | 100   |     |         |         |  |  |         |     |               |  |  |
| Contact Classes:48 | Tutorial Classes: Nil |                |   |   | Practical Classes:<br>Nill |     |     |       | Tot | al Clas | sses:48 |  |  |         |     |               |  |  |

**Prerequisite:** Mathematics-I, Thermodynamics, Basic of Electrical and Electronics Engineering.

# **Course Objectives:**

- 1. To impart the basic knowledge of the functional blocks of measurement systems.
- 2. To provide technical understanding of various Temperature and pressure measuring instruments.
- 3. To expose the students to know the working of various physical variable Level, Flow, Speed and Acceleration measuring instruments.
- 4. To understand the working of various physical and Electrical variables Stress, Humidity, Force, Torque and Power measuring instruments.
- 5. To understand the concept of control system and calculate transfer functions of mechanical and translational systems with different techniques.

**Course Outcome:** After completion of the course, the student will be able to:

- 1. Know the basic knowledge of the functional blocks of measurement systems.
- 2. Describe the working of various physical variable Temperature and pressure measuring instruments.
- 3. Explain the working of various physical variable Level, flow, Speed and Acceleration measuring instruments.
- 4. Understand the working of various physical and Electrical variables Stress, Humidity, Force, Torque and Power measuring instruments.
- 5. Understand the concept of control system and calculate transfer functions of mechanical and translational systems with different techniques.

## UNIT - I:

Definition – Basic principles of measurement – Measurement systems, generalized configuration and functional description of measuring instruments – examples. Static and Dynamic performance characteristics– sources of errors, Classification and elimination of errors. Measurement of Displacement: Theory and construction of various transducers to measure displacement – Using Piezo electric, Inductive, capacitance, resistance, ionization and Photo electric transducers; Calibration procedures.

## UNIT - II:

Measurement of Temperature: Various Principles of measurement-Classification: Expansion Type: Bimetallic Strip- Liquid in glass Thermometer; Electrical Resistance Type: Thermistor, Thermocouple, RTD; Radiation Pyrometry: Optical Pyrometer; Changes in Chemical Phase: Fusible Indicators and Liquid crystals. Measurement of Pressure: Different principles used- Classification: Manometers, Dead weight pressure gauge Tester (Piston gauge), Bourdon pressure gauges, Bulk modulus pressure gauges, Bellows, Diaphragm gauges. Low pressure measurement – Thermal conductivitygauges, ionization pressure gauges, McLeod pressure gauge.

#### UNIT - III:

Measurement of Level: Direct methods – Indirect methods – Capacitive, Radioactive, Ultrasonic, Magnetic, Cryogenic Fuel level indicators –Bubbler level indicators.

Flow measurement: Rotameter, magnetic, Ultrasonic, Turbine flowmeter, Hot – wire anemometer, Laser Doppler Anemometer (LDA).

Measurement of Speed: Mechanical Tachometers, Electrical tachometers, Non-contact type Stroboscope; Measurement of Acceleration and Vibration: Different simple instruments – Principles of Seismic instruments – Vibrometer and accelerometer using this principle- Piezo electric accelerometer.

#### UNIT - IV:

Stress-Strain measurements: Various types of stress and strain measurements – Selection and installation of metallic strain gauges; electrical strain gauge – gauge factor – method of usage of resistance strain gauge for bending, compressive and tensile strains – Temperature compensation techniques, Use of strain gauges for measuring torque, Strain gauge Rosettes.

Measurement of Humidity: Moisture content of gases, Sling Psychrometer, Absorption Psychrometer, Dew point meter. Measurement of Force, Torque and Power- Elastic force meters, load cells, Torsion meters, Dynamometers.

## UNIT - V:

Elements of Control Systems: Introduction, Importance – Classification – Open and closed systems- Servomechanisms – Examples with block diagrams – Temperature, speed and position control systems- Transfer functions- First and Second order mechanical systems

# **TEXT BOOKS:**

- 1. Principles of Industrial Instrumentation & Control Systems/Chennakesava R alaavala, -Cengage Learning/1st Edition, 2009.
- 2. Basic Principles Measurements (Instrumentation) & Control Systems /S. Bhaskar/ Anuradha Publications

- 1. Measurement Systems: Applications & design, E. O. Doebelin, TMH, Tata Mcgraw Hill/6<sup>th</sup>Edition, 2017.
- 2. Instrumentation, Measurement & Analysis, B.C. Nakra & K.K. Choudhary, TMH, 4th Edition, 2016.
- 3. Experimental Methods for Engineers / Holman
- 4. Mechanical and Industrial Measurements / R. K. Jain/ Khanna Publishers.
- 5. Mechanical Measurements / Sirohi and Radhakrishna / New Age International, 3<sup>rd</sup> Edition, 2013.

# BASIC ELECTRICAL AND ELECTRONICS ENGINEERING LABORATORY

#### B Tech II Year II Sem.

| Course Code          | Category               | Hours/<br>Week |   |   | · ( ) † e                |     |     | Credits | Max     | Maximum Mar |  |
|----------------------|------------------------|----------------|---|---|--------------------------|-----|-----|---------|---------|-------------|--|
| 2255426              | Engineering<br>Science | L              | T | P | 1                        | CIA | SEE | TOTAL   |         |             |  |
| 23EE406              |                        | 0              | 0 | 2 |                          | 40  | 60  | 100     |         |             |  |
| Contact Classes: Nil | Tutorial Classes: Nil  | Practical C    |   |   | Practical Classes:<br>32 |     |     | Tot     | al Clas | sses:32     |  |

**Pre-requisites:** Basic Electrical and Electronics Engineering

# **Course Objectives:**

- 1. To introduce the concepts of electrical circuits and its components
- 2. To understand magnetic circuits, DC circuits and AC single phase & DC circuits and AC single phase & DC circuits
- 3. To study and understand the different types of DC/AC machines and Transformers.
- 4. To import the knowledge of various electrical installations.
- 5. To introduce the concept of power, power factor and its improvement.
- 6. To introduce the concepts of diodes & transistors, and
- 7. To impart the knowledge of various configurations, characteristics and applications.

# **Course Outcomes:**

- 1. To analyze and solve electrical circuits using network laws and theorems.
- 2. To understand and analyze basic Electric and Magnetic circuits
- 3. To study the working principles of Electrical Machines
- 4. To introduce components of Low Voltage Electrical Installations
- 5. To identify and characterize diodes and various types of transistors.

# List of Experiments/ Demonstrations:

# PART A: ELECTRICAL

- 1. Verification of KVL and KCL
- 2. (i) Measurement of Voltage, Current and Real Power in primary and Secondary Circuits of a Single-Phase Transformer
  - (ii) Verification of Relationship between Voltages and Currents (Star-Delta, Delta- Delta, Delta- star, Star-Star) in a Three Phase Transformer
- 3. Measurement of Active and Reactive Power in a balanced Three-phase circuit
- 4. Performance Characteristics of a Separately Excited DC Shunt Motor
- 5. Performance Characteristics of a Three-phase Induction Motor
- 6. No-Load Characteristics of a Three-phase Alternator

# PART B: ELECTRONICS

- 1. Study and operation of
  - (i) Multi-meters (ii) Function Generator (iii) Regulated Power Supplies (iv) CRO.
- 2. PN Junction diode characteristics
- 3. Zener diode characteristics and Zener as voltage Regulator
- 4. Input & Dutput characteristics of Transistor in CB / CE configuration
- 5. Full Wave Rectifier with & Damp; without filters
- 6. Input and Output characteristics of FET in CS configuration

# **TEXT BOOKS:**

- 1. Basic Electrical and electronics Engineering –M S Sukija TK Nagasarkar Oxford University
- 2. Basic Electrical and electronics Engineering-D P Kothari. I J Nagarath, McGraw Hill Education

З.

- 1. Electronic Devices and Circuits R. L. Boylestead and Louis Nashelsky, PEI/PHI, 9th Ed, 2006.
- 2. Millman's Electronic Devices and Circuits J. Millman and C. C. Halkias, Satyabrata Jit, TMH, 2/e, 1998.

## FLUID MECHANICS & HYDRAULIC MACHINES LABORATORY

#### B Tech II Year II Sem.

| Course Code         | Category              | Hours/<br>Week |   | - |                          | -   |     | _     |         |         |  | Credits | Max | kimum | Marks |
|---------------------|-----------------------|----------------|---|---|--------------------------|-----|-----|-------|---------|---------|--|---------|-----|-------|-------|
| 00157407            | Professional core     | L              | T | P |                          | CIA | SEE | TOTAL |         |         |  |         |     |       |       |
| 23ME407             |                       | 0              | 0 | 2 | T                        | 40  | 60  | 100   |         |         |  |         |     |       |       |
| Contact Classes:Nil | Tutorial Classes: Nil | Practical C    |   |   | Practical Classes:<br>32 |     |     | Tot   | al Clas | sses:32 |  |         |     |       |       |

# **Course Objectives:**

- 1. To understand the basic principles of fluid mechanics.
- 2. To identify various types of flows.
- 3. To understand boundary layer concepts and flow through pipes.
- 4. To evaluate the performance of hydraulic turbines.
- 5. To understand the functioning and characteristic curves of pumps.

## **Course Outcomes:**

- 1. Able to explain the effect of fluid properties on a flow system.
- 2. Able to identify type of fluid flow patterns and describe continuity equation.
- 3. To analyze a variety of practical fluid flow and measuring devices and utilize fluid mechanics principles in design.
- 4. To select and analyze an appropriate turbine with reference to given situation in power plants.
- 5. To estimate performance parameters of a given Centrifugal and Reciprocating pump.

# List of Experiments:

- 1. Impact of jets on Vanes.
- 2. Performance Test on Pelton Wheel.
- 3. Performance Test on Francis Turbine.
- 4. Performance Test on Kaplan Turbine.
- 5. Performance Test on Single Stage Centrifugal Pump.
- 6. Performance Test on Multi Stage Centrifugal Pump.
- 7. Performance Test on Reciprocating Pump.
- 8. Calibration of Venturimeter.
- 9. Calibration of Orifice meter.
- 10. Determination of friction factor for a given pipe line.
- 11. Determination of loss of head due to sudden contraction in a pipeline.
- 12. Verification of Bernoulli's Theorems.

#### INSTRUMENTATION AND CONTROL SYSTEMS LABORATORY

# B Tech II Year II Sem.

| Course Code             | Category              | Hours/<br>Week    |        |     | · · · · · · · · · · · · · · · · · · · |           |           | Credits      | Max     | Maximum Marks |  |  |
|-------------------------|-----------------------|-------------------|--------|-----|---------------------------------------|-----------|-----------|--------------|---------|---------------|--|--|
| 23ME408                 | Professional core     | <b>L</b>          | T<br>0 | P 2 | 1                                     | CIA<br>40 | SEE<br>60 | TOTAL<br>100 |         |               |  |  |
| Contact Classes:<br>Nil | Tutorial Classes: Nil | Practical C<br>32 |        |     | Practical Classes: Tota               |           |           | al Clas      | sses:32 |               |  |  |

Pre-requisites: Basic principles of Instrumentation and control systems

Course Outcomes: At the end of the course, the student will be able to

- 1. Characterize and calibrate measuring devices.
- 2. Identify and analyze errors in measurement.
- 3. Analyze measured data using regression analysis.
- 4. Calibration of Pressure Gauges, temperature, LVDT, capacitive transducer, rotameter.
- 5. Control the pressure, temperature and water level using SCADA.

# List of Experiments:

- 1. Calibration of Pressure Gauges.
- 2. Calibration of transducer for temperature measurement.
- 3. Study and calibration of LVDT transducer for displacement measurement.
- 4. Calibration of strain gauge for temperature measurement.
- 5. Calibration of thermocouple for temperature measurement.
- 6. Calibration of capacitive transducer for angular displacement.
- 7. Study and calibration of photo and magnetic speed pickups for the measurement of speed.
- 8. Calibration of resistance temperature detector for temperature measurement.
- 9. Study and calibration of a rotameter for flow measurement.
- 10. Study and use of a Seismic pickup for the measurement of vibration amplitude of an engine bedat various loads.
- 11. Study and calibration of McLeod gauge for low pressure.
- 12. Measurement and control of Pressure of a process using SCADA system.
- 13. Measurement and control of level in a tank using capacitive transducer with SCADA.
- 14. Measurement and control of temperature of a process using resistance temperature detector with SCADA.

#### GENDER SENSITIZATION LAB

## B Tech II Year II Sem.

| Course Code          | Category              | Hours/<br>Week      |   |   | -                    |     |     | ' ('radite |         |         | Max | kimum | Marks |
|----------------------|-----------------------|---------------------|---|---|----------------------|-----|-----|------------|---------|---------|-----|-------|-------|
| MC4002               | Professional core     | L                   | T | P | 0                    | CIA | SEE | TOTAL      |         |         |     |       |       |
| WC+002               |                       | 0                   | 0 | 2 |                      | 40  | 60  | 100        |         |         |     |       |       |
| Contact Classes: Nil | Tutorial Classes: Nil | Practical Cla<br>32 |   |   | Practical Classes: T |     |     | Tot        | al Clas | sses:32 |     |       |       |

# **COURSE DESCRIPTION**

This course offers an introduction to Gender Studies, an interdisciplinary field that asks critical questions about the meanings of sex and gender in society. The primary goal of this course is to familiarize students with key issues, questions and debates in Gender Studies, both historical and contemporary. It draws on multiple disciplines – such as literature, history, economics, psychology, sociology, philosophy, political science, anthropology and media studies – to examine cultural assumptions about sex, gender, and sexuality.

This course integrates analysis of current events through student presentations, aiming to increase awareness of contemporary and historical experiences of women, and of the multiple ways that sex and gender interact with race, class, caste, nationality and other social identities. This course also seeks to build an understanding and initiate and strengthen programmes combating gender-based violence and discrimination. The course also features several exercises and reflective activities designed to examine the concepts of gender, gender-based violence, sexuality, and rights. It will further explore the impact of gender-based violence on education, health and development.

# **Objectives of the Course:**

- 1. To develop students' sensibility with regard to issues of gender in contemporary India.
- 2. To provide a critical perspective on the socialization of men and women.
- 3. To introduce students to information about some key biological aspects of genders
- 4. To expose the students to debates on the politics and economics of work.
- 5. To help students reflect critically on gender violence
- 6. To expose students to more egalitarian interactions between men and women
- 7. .

# **Learning Outcomes**

- 1. Students will have developed a better understanding of important issues related to gender in contemporary India.
- 2. Students will be sensitized to basic dimensions of the biological, sociological, psychological and legal aspects of gender. This will be achieved through discussion of materials derived from research, facts, everyday life, literature and film
- 3. □ Students will attain a finer grasp of how gender discrimination works in our society and how to counter it
- 4. Students will acquire insight into the gendered division of labor and its relation to politics and economics
- 5. Men and women students and professionals will be better equipped to work and live together as equals
- 6. Students will develop a sense of appreciation of women in all walks of life.

7. Through providing accounts of studies and movements as well as the new laws that provide protection and relief to women, the textbook will empower students to understand and respond to gender violence.

## **Unit-I: UNDERSTANDING GENDER**

Introduction: Definition of Gender-Basic Gender Concepts and Terminology-Exploring Attitudes towards Gender-Construction of Gender-Socialization: Making Women, Making Men - Preparing for Womanhood. Growing up Male. First lessons in Caste.

# Unit - II: GENDER ROLES AND RELATIONS

Two or Many? -Struggles with Discrimination-Gender Roles and Relations-Types of Gender Roles-Gender Roles and Relationships Matrix-Missing Women-Sex Selection and Its Consequences-Declining Sex Ratio. Demographic Consequences-Gender Spectrum: Beyond the Binary.

#### Unit - III: GENDER AND LABOUR:

Division and Valuation of Labour-Housework: The Invisible Labor- "My Mother doesn't Work." "Share the Load."-Work: Its Politics and Economics -Fact and Fiction. Unrecognized and Unaccounted work. -Gender Development Issues-Gender, Governance and Sustainable Development-Gender and Human Rights-Gender and Mainstreaming.

# Unit - IV: GENDER - BASED VIOLENCE

The Concept of Violence-Types of Gender-based Violence-Gender-based Violence from a Human Rights Perspective-Sexual Harassment: Say No!-Sexual Harassment, not Eve-teasing- Coping with Everyday Harassment- Further Reading: "Chupulu".

Domestic Violence: Speaking OutIs Home a Safe Place? -When Women Unite [Film]. Rebuilding Lives. Thinking about Sexual Violence Blaming the Victim-"I Fought for my Life...."

# Unit - V: GENDER AND CULTURE

Gender and Film-Gender and Electronic Media-Gender and Advertisement-Gender and PopularLiterature- Gender Development Issues-Gender Issues-Gender Sensitive Language-Gender and Popular Literature - Just Relationships: Being Together as Equals Mary Kom and Onler. Love and Acid just do not Mix. Love Letters. Mothers and Fathers. Rosa Parks- The Brave Heart.

Note: Since it is Interdisciplinary Course, Resource Persons can be drawn from the fields of English Literature or Sociology or Political Science or any other qualified faculty who has expertise in this field from engineering departments.

Classes will consist of a combination of activities: dialogue-based lectures, discussions, collaborative learning activities, group work and in-class assignments. Apart from the above prescribed book, Teachers can make use of any authentic materials related to the topics given in the syllabus on "Gender".

ESSENTIAL READING: The Textbook, "Towards a World of Equals: A Bilingual Textbook on Gender" written by A.Suneetha, Uma Bhrugubanda, Duggirala Vasanta, Rama Melkote, Vasudha Nagaraj, Asma Rasheed, Gogu Shyamala, Deepa Sreenivas and Susie Tharu published by Telugu Akademi, Telangana Government in 2015.

# ASSESSMENT AND GRADING:

Discussion & Classroom Participation: 20%

Project/Assignment: 30% End Term Exam: 50%